library(tidyverse)
library(plotly)
library(sf)
library(mapview)
library(tigris)
library(censusapi)
library(leaflet)
library(lehdr)
library(usmap)
library(lmtest)
library(pracma)
library(lmtest)
library(forecast)
library(vars)
library(rvest)
library(RSelenium)
library(seleniumPipes)
library(dLagM)
library(jsonlite)
library(rgdal)
library(esri2sf)
library(readr)
options(
tigris_class = "sf",
tigris_use_cache = TRUE
)
Sys.setenv(CENSUS_KEY="10dcd73d7c043e91bac9fb8d3989cbff54b08790")
Get the cumulative case data, first for SCC.
# remDr <- remoteDriver(
# remoteServerAddr = "192.168.86.25",
# port = 4445L
# )
# remDr$open()
#
# remDr$navigate("https://app.powerbigov.us/view?r=eyJrIjoiZTg2MTlhMWQtZWE5OC00ZDI3LWE4NjAtMTU3YWYwZDRlOTNmIiwidCI6IjBhYzMyMDJmLWMzZTktNGY1Ni04MzBkLTAxN2QwOWQxNmIzZiJ9")
#
# webElem <- remDr$findElements(using = "class", value = "column")
#
# cases <-
# 1:length(webElem) %>%
# map(function(x){
# webElem[[x]]$getElementAttribute("aria-label") %>% as.character()
# }) %>%
# unlist() %>%
# as.data.frame()
#
# scc_cumulative_cases <-
# cases %>%
# rename(text = ".") %>%
# filter(grepl("Total_cases",text)) %>%
# separate(text, c("date","cases"), sep = "\\.") %>%
# mutate(
# date =
# substr(date,6,nchar(.)) %>%
# as.Date("%A, %B %d, %Y"),
# cases =
# substr(cases,13,nchar(.)) %>%
# as.numeric()
# )
#
# saveRDS(scc_cumulative_cases, file = "/Users/simonespeizer/Documents/2020 Spring Quarter/CEE 218Z/covid19/Simone_Speizer/scc_cumulative_cases.rds")
scc_cumulative_cases <- readRDS("/Users/simonespeizer/Documents/2020 Spring Quarter/CEE 218Z/covid19/Simone_Speizer/scc_cumulative_cases.rds")
Also for SMC.
# remDr$navigate("https://app.powerbigov.us/view?r=eyJrIjoiMWI5NmE5M2ItOTUwMC00NGNmLWEzY2UtOTQyODA1YjQ1NWNlIiwidCI6IjBkZmFmNjM1LWEwNGQtNDhjYy1hN2UzLTZkYTFhZjA4ODNmOSJ9")
#
# webElem <- remDr$findElements(using = "class", value = "column")
#
# tests <-
# 1:length(webElem) %>%
# map(function(x){
# webElem[[x]]$getElementAttribute("aria-label") %>% as.character()
# }) %>%
# unlist() %>%
# as.data.frame()
#
# tests_clean <-
# tests %>%
# rename(text = ".") %>%
# separate(text, c("date","test_text"), sep = "\\.") %>%
# separate(test_text, c(NA,"type",NA,"tests")) %>%
# mutate(
# date =
# substr(date,23,nchar(.)) %>%
# as.Date("%A, %B %d, %Y"),
# tests =
# tests %>%
# as.numeric()
# ) %>%
# spread(
# key = type,
# value = tests
# ) %>%
# mutate(
# total = Negative + Pending + Positive,
# perc_positive = Positive/total,
# perc_positive_movavg = movavg(perc_positive, 7, type = "s")
# )
#
# smc_cumulative_cases <- tests_clean %>%
# mutate(cumulative_cases = cumsum(Positive), cumulative_negative = cumsum(Negative), cumulative_total = cumulative_cases+cumulative_negative, perc_positive_cumulative = cumulative_cases*100 / cumulative_total, perc_positive_cumulative_mov = movavg(perc_positive_cumulative, 7, type = "s"))
#
# saveRDS(smc_cumulative_cases, file = "/Users/simonespeizer/Documents/2020 Spring Quarter/CEE 218Z/covid19/Simone_Speizer/smc_cumulative_cases.rds")
smc_cumulative_cases <- readRDS("/Users/simonespeizer/Documents/2020 Spring Quarter/CEE 218Z/covid19/Simone_Speizer/smc_cumulative_cases.rds")
Get social distancing data.
scc_blockgroups <-
block_groups("CA","Santa Clara", cb=F, progress_bar=F) %>%
st_transform('+proj=longlat +datum=WGS84')
smc_blockgroups <-
block_groups("CA","San Mateo", cb=F, progress_bar=F) %>%
st_transform('+proj=longlat +datum=WGS84')
bay_sd <- readRDS("/Users/simonespeizer/pCloud Drive/Shared/SFBI/Restricted Data Library/Safegraph/covid19analysis/bay_socialdistancing_v2.rds") %>%
mutate(date = date_range_start %>% substr(1,10) %>% as.Date())
# obtaining weekends
weekends <- bay_sd %>%
filter(!duplicated(date)) %>%
arrange(date) %>%
mutate(weekend = ifelse((date %>% as.numeric()) %% 7 %in% c(2,3), T, F)) %>%
dplyr::select(date,weekend)
bay_sd <- bay_sd %>% left_join(weekends)
SCC data processing.
scc_cases_sd_daily <- bay_sd %>%
filter(origin_census_block_group %in% scc_blockgroups$GEOID) %>%
group_by(date) %>%
summarize(total_at_home = sum(completely_home_device_count), total_devices = sum(device_count)) %>%
mutate(
percent_at_home = total_at_home*100/total_devices,
percent_leaving_home = (100 - percent_at_home),
) %>%
left_join(
scc_cumulative_cases
) %>%
filter(date >= min(scc_cumulative_cases$date))
# get the baseline percent of people at home
pre_case_growth_at_home_scc <- bay_sd %>%
filter(date < min(scc_cumulative_cases$date)) %>%
filter(origin_census_block_group %in% scc_blockgroups$GEOID) %>%
summarize(total_at_home = sum(completely_home_device_count), total_devices = sum(device_count)) %>%
mutate(percent_at_home = total_at_home*100/total_devices, percent_leaving_home = (100 - percent_at_home))
# include change in percent leaving home
scc_cases_sd_daily <- scc_cases_sd_daily %>%
mutate(leaving_home_dif = percent_leaving_home - pre_case_growth_at_home_scc$percent_leaving_home[1],
log_cases = log(cases))
# compute number of differences for stationarity
ndiffs(scc_cases_sd_daily$cases)
## [1] 2
ndiffs(scc_cases_sd_daily$log_cases[-1])
## [1] 2
ndiffs(scc_cases_sd_daily$leaving_home_dif)
## [1] 1
scc_test_big <- scc_cases_sd_daily %>%
mutate(
dlog_cases = c(NA,diff(log_cases)),
d2log_cases = c(NA,NA,diff(log_cases, differences = 2)),
dcases = c(NA,diff(cases)),
d2cases = c(NA,NA,diff(dcases, differences = 2)),
dleaving = c(NA,diff(leaving_home_dif)),
d2leaving = c(NA,NA,diff(leaving_home_dif, differences = 2)),
cases_mov = movavg(cases, 7, type = "s"),
log_cases_mov = movavg(log_cases, 7, type = "s"),
dlog_cases_mov = c(NA,diff(log_cases_mov)),
d2log_cases_mov = c(NA,NA,diff(log_cases_mov, differences = 2)),
dcases_mov = c(NA,diff(cases_mov)),
d2cases_mov = c(NA,diff(dcases_mov)),
leaving_mov = movavg(leaving_home_dif, 7, type = "s"),
dleaving_mov = c(NA,diff(leaving_mov)),
d2leaving_mov = c(NA,diff(dleaving_mov)),
leaving4 = c(rep(NA,4), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-4)]),
dleaving4 = c(NA,diff(leaving4)),
d2leaving4 = c(NA,NA,diff(leaving4, differences = 2)),
leaving3 = c(rep(NA,3), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-3)]),
leaving3_mov = movavg(leaving3, 7, type = "s"),
dleaving3_mov = c(NA,diff(leaving3_mov)),
d2leaving3_mov = c(NA,NA,diff(leaving3_mov, differences = 2)),
leaving4_mov = movavg(leaving4, 7, type = "s"),
dleaving4_mov = c(NA,diff(leaving4_mov)),
d2leaving4_mov = c(NA,NA,diff(leaving4_mov, differences = 2)),
leaving5 = c(rep(NA,5), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-5)]),
leaving5_mov = movavg(leaving5, 7, type = "s"),
dleaving5_mov = c(NA,diff(leaving5_mov)),
d2leaving5_mov = c(NA,NA,diff(leaving5_mov, differences = 2)),
leaving6 = c(rep(NA,6), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-6)]),
leaving6_mov = movavg(leaving6, 7, type = "s"),
dleaving6_mov = c(NA,diff(leaving6_mov)),
d2leaving6_mov = c(NA,NA,diff(leaving6_mov, differences = 2)),
leaving7 = c(rep(NA,7), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-7)]),
leaving7_mov = movavg(leaving7, 7, type = "s"),
dleaving7_mov = c(NA,diff(leaving7_mov)),
d2leaving7_mov = c(NA,NA,diff(leaving7_mov, differences = 2)),
leaving8 = c(rep(NA,8), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-8)]),
leaving8_mov = movavg(leaving8, 7, type = "s"),
dleaving8_mov = c(NA,diff(leaving8_mov)),
d2leaving8_mov = c(NA,NA,diff(leaving8_mov, differences = 2)),
leaving9 = c(rep(NA,9), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-9)]),
leaving9_mov = movavg(leaving9, 7, type = "s"),
dleaving9_mov = c(NA,diff(leaving9_mov)),
d2leaving9_mov = c(NA,NA,diff(leaving9_mov, differences = 2)),
leaving10 = c(rep(NA,10), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-10)]),
leaving10_mov = movavg(leaving10, 7, type = "s"),
dleaving10_mov = c(NA,diff(leaving10_mov)),
d2leaving10_mov = c(NA,NA,diff(leaving10_mov, differences = 2)),
leaving11 = c(rep(NA,11), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-11)]),
leaving11_mov = movavg(leaving11, 7, type = "s"),
dleaving11_mov = c(NA,diff(leaving11_mov)),
d2leaving11_mov = c(NA,NA,diff(leaving11_mov, differences = 2)),
leaving12 = c(rep(NA,12), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-12)]),
leaving12_mov = movavg(leaving12, 7, type = "s"),
dleaving12_mov = c(NA,diff(leaving12_mov)),
d2leaving12_mov = c(NA,NA,diff(leaving12_mov, differences = 2)),
leaving13 = c(rep(NA,13), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-13)]),
leaving13_mov = movavg(leaving13, 7, type = "s"),
dleaving13_mov = c(NA,diff(leaving13_mov)),
d2leaving13_mov = c(NA,NA,diff(leaving13_mov, differences = 2)),
leaving14 = c(rep(NA,14), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-14)]),
leaving14_mov = movavg(leaving14, 7, type = "s"),
dleaving14_mov = c(NA,diff(leaving14_mov)),
d2leaving14_mov = c(NA,NA,diff(leaving14_mov, differences = 2)),
leaving18 = c(rep(NA,18), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-18)]),
leaving18_mov = movavg(leaving14, 7, type = "s"),
dleaving18_mov = c(NA,diff(leaving18_mov)),
d2leaving18_mov = c(NA,NA,diff(leaving18_mov, differences = 2)),
leaving21 = c(rep(NA,21), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-21)]),
leaving21_mov = movavg(leaving21, 7, type = "s"),
dleaving21_mov = c(NA,diff(leaving21_mov)),
d2leaving21_mov = c(NA,NA,diff(leaving21_mov, differences = 2)),
leaving28 = c(rep(NA,28), scc_cases_sd_daily$leaving_home_dif[1:(nrow(scc_cases_sd_daily)-28)]),
leaving28_mov = movavg(leaving28, 7, type = "s"),
dleaving28_mov = c(NA,diff(leaving28_mov)),
d2leaving28_mov = c(NA,NA,diff(leaving28_mov, differences = 2)),
past_cases = c(NA, scc_cases_sd_daily$cases[1:(nrow(scc_cases_sd_daily)-1)]),
cases_growth_daily = (dcases / past_cases)*100,
cases_growth_daily_mov = movavg(cases_growth_daily, 7, type = "s")
) %>%
filter(date >= "2020-03-01")
ndiffs(scc_test_big$cases_growth_daily)
## [1] 1
scc_test_big_pre415 <- scc_test_big %>% filter(date <= "2020-04-15")
Plots testing
# raw, no shifts
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving_mov, color="Leaving home")) +
geom_line(aes(y = cases_growth_daily_mov-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Daily case growth rate (%), 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - Growth Rate, No Lag")
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving_mov, color="Leaving home")) +
geom_line(aes(y = dcases_mov-40, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Daily new cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - Cases, No Lag")
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving_mov, color="Leaving home")) +
geom_line(aes(y = d2cases_mov-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Change in change in cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - Change in Cases, No Lag")
# log cases
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving_mov, color="Leaving home")) +
geom_line(aes(y = log_cases_mov-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Log of cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - log(cases), No Lag")
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving_mov, color="Leaving home")) +
geom_line(aes(y = dlog_cases_mov*100-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~(.+30)/100, name = "Change in log of cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - change in log of cases, no lag")
# raw, no shifts, pre april 15
scc_test_big_pre415 %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving_mov, color="Leaving home")) +
geom_line(aes(y = cases_growth_daily_mov-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Daily case growth rate (%), 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - Case Growth Rate, no Lag, pre 4/15")
scc_test_big_pre415 %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving_mov, color="Leaving home")) +
geom_line(aes(y = dlog_cases_mov*100-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~./100+30, name = "Change in log of cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - Change in Log of Cases, no Lag, pre 4/15")
14 day lag
# 14 day shift
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving14_mov, color="Leaving home")) +
geom_line(aes(y = cases_growth_daily_mov-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Daily case growth rate (%), 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 14 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - growth rate, 14 Day Lag")
scc_test_big_pre415 %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving14_mov, color="Leaving home")) +
geom_line(aes(y = cases_growth_daily_mov-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Daily case growth rate (%), 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 14 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - growth rate, 14 Day Lag, pre 4/15")
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving14_mov, color="Leaving home")) +
geom_line(aes(y = dcases_mov-40, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+40, name = "Daily new cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 14 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - change in cases, 14 Day Lag")
scc_test_big_pre415 %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving14_mov, color="Leaving home")) +
geom_line(aes(y = dcases_mov-40, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+40, name = "Daily new cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 14 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - change in cases, 14 Day Lag, pre 4/15")
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving14_mov, color="Leaving home")) +
geom_line(aes(y = d2cases_mov-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Change in change in cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 14 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - change in change of cases, 14 Day Lag")
scc_test_big_pre415 %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving14_mov, color="Leaving home")) +
geom_line(aes(y = d2cases_mov-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Change in change in cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 14 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - change in change of cases, 14 Day Lag, pre 4/15")
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving14_mov, color="Leaving home")) +
geom_line(aes(y = dlog_cases_mov*100-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~(.+30)/100, name = "Change in log of cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 14 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - change in log of cases, 14 day lag")
10 day lag
# 10 day lag
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving10_mov, color="Leaving home")) +
geom_line(aes(y = cases_growth_daily_mov-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Daily case growth rate (%), 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 10 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - case growth rate, 10 Day Lag")
scc_test_big_pre415 %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving10_mov, color="Leaving home")) +
geom_line(aes(y = cases_growth_daily_mov-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Daily case growth rate (%), 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 10 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - case growth rate, 10 Day Lag, pre 4/15")
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving10_mov, color="Leaving home")) +
geom_line(aes(y = dcases_mov-40, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+40, name = "Daily new cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 10 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - change in cases, 10 Day Lag")
scc_test_big_pre415 %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving10_mov, color="Leaving home")) +
geom_line(aes(y = dcases_mov-40, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+40, name = "Daily new cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 10 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - change in cases, 10 Day Lag, pre 4/15")
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving10_mov, color="Leaving home")) +
geom_line(aes(y = dlog_cases_mov*100-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~(.+30)/100, name = "Change in log of cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 10 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - change in log of cases, 10 day lag")
18 day lag
# 18 day lag
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving18_mov, color="Leaving home")) +
geom_line(aes(y = cases_growth_daily_mov-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Daily case growth rate (%), 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 18 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - growth rate, 18 Day Lag")
scc_test_big_pre415 %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving18_mov, color="Leaving home")) +
geom_line(aes(y = cases_growth_daily_mov-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Daily case growth rate (%), 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 18 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - growth rate, 18 Day Lag, pre 4/15")
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving18_mov, color="Leaving home")) +
geom_line(aes(y = dcases_mov-40, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+40, name = "Daily new cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 18 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - change in cases, 18 Day Lag")
scc_test_big_pre415 %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving18_mov, color="Leaving home")) +
geom_line(aes(y = dcases_mov-40, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+40, name = "Daily new cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 18 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - change in cases, 18 Day Lag, pre 4/15")
21 day lag
# 21 day lag??
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving21_mov, color="Leaving home")) +
geom_line(aes(y = cases_growth_daily_mov-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Daily case growth rate (%), 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 21 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - growth rate, 21 Day Lag")
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving21_mov, color="Leaving home")) +
geom_line(aes(y = dcases_mov-40, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+40, name = "Daily new cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 21 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - change in cases, 21 Day Lag")
28 day lag…
# going wild with a 28 day lag
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving28_mov, color="Leaving home")) +
geom_line(aes(y = cases_growth_daily_mov-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+30, name = "Daily case growth rate (%), 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 28 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - growth rate, 28 Day Lag")
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving28_mov, color="Leaving home")) +
geom_line(aes(y = dcases_mov-40, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~.*1+40, name = "Daily new cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 28 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - change in cases, 28 Day Lag")
Just log, 7 days
# trying just log plot with 7 day lag
scc_test_big %>% ggplot(
aes(x = date)) +
geom_line(aes(y = leaving7_mov, color="Leaving home")) +
geom_line(aes(y = dlog_cases_mov*100-30, color = "Cases")) +
scale_y_continuous(sec.axis = sec_axis(~(.+30)/100, name = "Change in log of cases, 7 day moving average")) +
scale_colour_manual(values = c("red", "blue")) +
labs(y = "Change in percent of devices leaving home 7 days ago relative to before, 7 day moving average", x = "Date", color = "Data", title = "Santa Clara County - change in log of cases, 7 day lag")
Testing ardlm
dleaving and d2logcases for 4 lags, moving average
testing_ardl4 = ardlDlm(x = scc_test_big$dleaving_mov, y = scc_test_big$d2log_cases_mov, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c()))
summary(testing_ardl4)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0213610 -0.0014294 0.0006449 0.0016122 0.0266611
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0009501 0.0008704 -1.092 0.279
## X.4 -0.0006286 0.0012117 -0.519 0.605
## Y.1 -0.0364700 0.1170492 -0.312 0.756
## Y.2 0.2251433 0.1197267 1.880 0.064 .
## Y.3 0.4227324 0.1001782 4.220 6.94e-05 ***
## Y.4 0.0537929 0.1099349 0.489 0.626
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.007004 on 73 degrees of freedom
## Multiple R-squared: 0.2386, Adjusted R-squared: 0.1865
## F-statistic: 4.576 on 5 and 73 DF, p-value: 0.001098
testing_ardl4_1 = ardlDlm(x = scc_test_big$dleaving_mov, y = scc_test_big$d2log_cases_mov, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c(2)))
summary(testing_ardl4_1)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0191064 -0.0023746 0.0007522 0.0016163 0.0304296
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0012538 0.0008698 -1.441 0.153688
## X.4 0.0007032 0.0009998 0.703 0.484073
## Y.1 -0.1035140 0.1133816 -0.913 0.364223
## Y.3 0.3864274 0.0999705 3.865 0.000236 ***
## Y.4 0.0420932 0.1116238 0.377 0.707180
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.007123 on 74 degrees of freedom
## Multiple R-squared: 0.2017, Adjusted R-squared: 0.1586
## F-statistic: 4.676 on 4 and 74 DF, p-value: 0.002027
testing_ardl4_2 = ardlDlm(x = scc_test_big$dleaving_mov, y = scc_test_big$d2log_cases_mov, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c(2,3)))
summary(testing_ardl4_2)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.025948 -0.003072 0.000670 0.002360 0.038103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0017258 0.0009378 -1.840 0.0697 .
## X.4 0.0018170 0.0010426 1.743 0.0855 .
## Y.1 -0.0717088 0.1231452 -0.582 0.5621
## Y.4 -0.0283038 0.1199277 -0.236 0.8141
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.007757 on 75 degrees of freedom
## Multiple R-squared: 0.04057, Adjusted R-squared: 0.002194
## F-statistic: 1.057 on 3 and 75 DF, p-value: 0.3725
testing_ardl4_3 = ardlDlm(x = scc_test_big$dleaving_mov, y = scc_test_big$d2log_cases_mov, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c(2,3,4)))
summary(testing_ardl4_3)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.026160 -0.002982 0.000637 0.002331 0.037846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0017159 0.0009310 -1.843 0.0692 .
## X.4 0.0017349 0.0009767 1.776 0.0797 .
## Y.1 -0.0800756 0.1171969 -0.683 0.4965
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.007708 on 76 degrees of freedom
## Multiple R-squared: 0.03986, Adjusted R-squared: 0.01459
## F-statistic: 1.578 on 2 and 76 DF, p-value: 0.2132
testing_ardl4_4 = ardlDlm(x = scc_test_big$dleaving_mov, y = scc_test_big$d2log_cases_mov, p = 4, q = 4, remove = list(p = c(), q=c(2,3,4)))
summary(testing_ardl4_4)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0144878 -0.0033536 -0.0005134 0.0033817 0.0200148
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0011730 0.0007628 -1.538 0.128489
## X.t -0.0001007 0.0014843 -0.068 0.946073
## X.1 0.0006811 0.0017657 0.386 0.700811
## X.2 0.0048748 0.0014204 3.432 0.000996 ***
## X.3 0.0024134 0.0015035 1.605 0.112841
## X.4 -0.0032499 0.0012177 -2.669 0.009396 **
## Y.1 -0.2120443 0.1069383 -1.983 0.051198 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.006182 on 72 degrees of freedom
## Multiple R-squared: 0.415, Adjusted R-squared: 0.3662
## F-statistic: 8.512 on 6 and 72 DF, p-value: 5.426e-07
testing_ardl4_5 = ardlDlm(x = scc_test_big$dleaving_mov, y = scc_test_big$d2log_cases_mov, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c(2,3,4)))
summary(testing_ardl4_5)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.026160 -0.002982 0.000637 0.002331 0.037846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0017159 0.0009310 -1.843 0.0692 .
## X.4 0.0017349 0.0009767 1.776 0.0797 .
## Y.1 -0.0800756 0.1171969 -0.683 0.4965
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.007708 on 76 degrees of freedom
## Multiple R-squared: 0.03986, Adjusted R-squared: 0.01459
## F-statistic: 1.578 on 2 and 76 DF, p-value: 0.2132
testing_ardl4_6= ardlDlm(x = scc_test_big$dleaving_mov, y = scc_test_big$d2log_cases_mov, p = 4, q = 4, remove = list(p = c(0,1,2), q=c(2,3,4)))
summary(testing_ardl4_6)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0151043 -0.0039623 -0.0002028 0.0022976 0.0315384
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0015637 0.0008312 -1.881 0.0638 .
## X.3 0.0061272 0.0013532 4.528 2.2e-05 ***
## X.4 -0.0022470 0.0012379 -1.815 0.0735 .
## Y.1 -0.2898320 0.1143508 -2.535 0.0133 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.006877 on 75 degrees of freedom
## Multiple R-squared: 0.246, Adjusted R-squared: 0.2158
## F-statistic: 8.156 on 3 and 75 DF, p-value: 9.064e-05
testing_ardl4_7= ardlDlm(x = scc_test_big$dleaving_mov, y = scc_test_big$d2log_cases_mov, p = 4, q = 4, remove = list(p = c(0,1), q=c(2,3,4)))
summary(testing_ardl4_7)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0147484 -0.0031604 -0.0004453 0.0031843 0.0193759
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0012013 0.0007424 -1.618 0.10988
## X.2 0.0052293 0.0011385 4.593 1.75e-05 ***
## X.3 0.0024392 0.0014453 1.688 0.09567 .
## X.4 -0.0031711 0.0011176 -2.837 0.00586 **
## Y.1 -0.2020174 0.1033346 -1.955 0.05436 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.006107 on 74 degrees of freedom
## Multiple R-squared: 0.4133, Adjusted R-squared: 0.3816
## F-statistic: 13.03 on 4 and 74 DF, p-value: 4.407e-08
testing_ardl4_7= ardlDlm(x = scc_test_big$dleaving_mov, y = scc_test_big$d2log_cases_mov, p = 4, q = 4, remove = list(p = c(0), q=c(2,3,4)))
summary(testing_ardl4_7)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0145645 -0.0033280 -0.0005126 0.0033991 0.0200407
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0011659 0.0007505 -1.554 0.124612
## X.1 0.0006026 0.0013245 0.455 0.650483
## X.2 0.0048628 0.0013997 3.474 0.000866 ***
## X.3 0.0023910 0.0014569 1.641 0.105068
## X.4 -0.0032203 0.0011288 -2.853 0.005635 **
## Y.1 -0.2115972 0.1060050 -1.996 0.049653 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.00614 on 73 degrees of freedom
## Multiple R-squared: 0.4149, Adjusted R-squared: 0.3749
## F-statistic: 10.35 on 5 and 73 DF, p-value: 1.57e-07
dleaving and d2logcases for 4 lags, no moving average
testing_ardl4 = ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c()))
summary(testing_ardl4)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.110146 -0.008604 0.001436 0.009713 0.095544
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.005328 0.003753 -1.420 0.15996
## X.4 0.001879 0.001196 1.572 0.12026
## Y.1 -0.648722 0.114527 -5.664 2.75e-07 ***
## Y.2 -0.575380 0.123212 -4.670 1.34e-05 ***
## Y.3 -0.419613 0.128582 -3.263 0.00168 **
## Y.4 -0.166485 0.093575 -1.779 0.07938 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03261 on 73 degrees of freedom
## Multiple R-squared: 0.3428, Adjusted R-squared: 0.2978
## F-statistic: 7.616 on 5 and 73 DF, p-value: 8.376e-06
testing_ardl4_1 = ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c(2)))
summary(testing_ardl4_1)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.145947 -0.005744 0.001111 0.006201 0.154961
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.002286 0.004183 -0.546 0.58641
## X.4 0.001054 0.001338 0.788 0.43327
## Y.1 -0.348503 0.107281 -3.249 0.00175 **
## Y.3 -0.014330 0.107387 -0.133 0.89421
## Y.4 0.003563 0.097568 0.037 0.97097
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03691 on 74 degrees of freedom
## Multiple R-squared: 0.1465, Adjusted R-squared: 0.1003
## F-statistic: 3.175 on 4 and 74 DF, p-value: 0.0183
testing_ardl4_2 = ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c(2,3)))
summary(testing_ardl4_2)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.147662 -0.005583 0.001611 0.006141 0.154145
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.002255 0.004149 -0.543 0.58845
## X.4 0.001021 0.001306 0.782 0.43681
## Y.1 -0.346777 0.105798 -3.278 0.00159 **
## Y.4 0.013241 0.064828 0.204 0.83871
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03667 on 75 degrees of freedom
## Multiple R-squared: 0.1463, Adjusted R-squared: 0.1121
## F-statistic: 4.283 on 3 and 75 DF, p-value: 0.007597
testing_ardl4_3 = ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c(2,3,4)))
summary(testing_ardl4_3)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.146828 -0.005788 0.001912 0.006288 0.154503
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.002278 0.004121 -0.553 0.58207
## X.4 0.001140 0.001163 0.980 0.33024
## Y.1 -0.350385 0.103653 -3.380 0.00115 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03643 on 76 degrees of freedom
## Multiple R-squared: 0.1458, Adjusted R-squared: 0.1233
## F-statistic: 6.486 on 2 and 76 DF, p-value: 0.002508
testing_ardl4_4 = ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 4, q = 4, remove = list(p = c(), q=c(2,3,4)))
summary(testing_ardl4_4)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.116748 -0.015674 -0.002089 0.006839 0.130480
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0004892 0.0038336 0.128 0.898806
## X.t 0.0048828 0.0012044 4.054 0.000126 ***
## X.1 0.0029664 0.0013313 2.228 0.028987 *
## X.2 0.0012681 0.0012156 1.043 0.300358
## X.3 -0.0003461 0.0011465 -0.302 0.763649
## X.4 0.0008240 0.0011210 0.735 0.464669
## Y.1 -0.3973830 0.1055672 -3.764 0.000338 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.033 on 72 degrees of freedom
## Multiple R-squared: 0.336, Adjusted R-squared: 0.2806
## F-statistic: 6.071 on 6 and 72 DF, p-value: 3.505e-05
testing_ardl4_5 = ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c(2,3,4)))
summary(testing_ardl4_5)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.146828 -0.005788 0.001912 0.006288 0.154503
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.002278 0.004121 -0.553 0.58207
## X.4 0.001140 0.001163 0.980 0.33024
## Y.1 -0.350385 0.103653 -3.380 0.00115 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03643 on 76 degrees of freedom
## Multiple R-squared: 0.1458, Adjusted R-squared: 0.1233
## F-statistic: 6.486 on 2 and 76 DF, p-value: 0.002508
testing_ardl4_6= ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 4, q = 4, remove = list(p = c(0,1,2), q=c(2,3,4)))
summary(testing_ardl4_6)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.146758 -0.005950 0.001806 0.006341 0.154456
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.288e-03 4.163e-03 -0.550 0.58415
## X.3 -3.637e-05 1.214e-03 -0.030 0.97617
## X.4 1.134e-03 1.184e-03 0.958 0.34101
## Y.1 -3.504e-01 1.043e-01 -3.358 0.00124 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03668 on 75 degrees of freedom
## Multiple R-squared: 0.1458, Adjusted R-squared: 0.1116
## F-statistic: 4.267 on 3 and 75 DF, p-value: 0.007743
testing_ardl4_7= ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 4, q = 4, remove = list(p = c(0,1), q=c(2,3,4)))
summary(testing_ardl4_7)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.146824 -0.005837 0.001871 0.006411 0.154204
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.315e-03 4.228e-03 -0.548 0.58559
## X.2 -6.382e-05 1.319e-03 -0.048 0.96154
## X.3 -4.342e-05 1.231e-03 -0.035 0.97195
## X.4 1.120e-03 1.231e-03 0.910 0.36598
## Y.1 -3.501e-01 1.052e-01 -3.326 0.00137 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03692 on 74 degrees of freedom
## Multiple R-squared: 0.1458, Adjusted R-squared: 0.09966
## F-statistic: 3.159 on 4 and 74 DF, p-value: 0.01875
testing_ardl4_7= ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 4, q = 4, remove = list(p = c(0), q=c(2,3,4)))
summary(testing_ardl4_7)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.141973 -0.012206 -0.000937 0.008027 0.155641
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0014129 0.0041878 -0.337 0.736802
## X.1 0.0027185 0.0014637 1.857 0.067313 .
## X.2 0.0002834 0.0013110 0.216 0.829483
## X.3 0.0004723 0.0012422 0.380 0.704871
## X.4 0.0006855 0.0012333 0.556 0.580002
## Y.1 -0.4450172 0.1154721 -3.854 0.000248 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03633 on 73 degrees of freedom
## Multiple R-squared: 0.1844, Adjusted R-squared: 0.1285
## F-statistic: 3.3 on 5 and 73 DF, p-value: 0.009638
6 lags
testing_ardl6 = ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 6, q = 1, remove = list(p = c(0,1,2,3,4,5), q=c()))
summary(testing_ardl6)
##
## Time series regression with "ts" data:
## Start = 7, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.137747 -0.008051 0.003462 0.012650 0.147615
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.005865 0.003852 -1.523 0.1321
## X.6 -0.002136 0.001132 -1.887 0.0631 .
## Y.1 -0.517877 0.103287 -5.014 3.54e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03348 on 74 degrees of freedom
## Multiple R-squared: 0.2566, Adjusted R-squared: 0.2365
## F-statistic: 12.77 on 2 and 74 DF, p-value: 1.717e-05
testing_ardl6_1 = ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 6, q = 1, remove = list(p = c(0,1,2,3,4), q=c()))
summary(testing_ardl6_1)
##
## Time series regression with "ts" data:
## Start = 7, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.126104 -0.010476 0.002082 0.013289 0.150996
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.006368 0.003814 -1.670 0.0992 .
## X.5 -0.001909 0.001114 -1.715 0.0907 .
## X.6 -0.002315 0.001123 -2.062 0.0428 *
## Y.1 -0.488432 0.103395 -4.724 1.09e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03304 on 73 degrees of freedom
## Multiple R-squared: 0.2854, Adjusted R-squared: 0.256
## F-statistic: 9.718 on 3 and 73 DF, p-value: 1.79e-05
testing_ardl6_2 = ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 6, q = 1, remove = list(p = c(0,1,2,3), q=c()))
summary(testing_ardl6_2)
##
## Time series regression with "ts" data:
## Start = 7, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.127410 -0.011333 0.002135 0.013349 0.149788
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0059533 0.0038808 -1.534 0.1294
## X.4 0.0007883 0.0012051 0.654 0.5151
## X.5 -0.0018371 0.0011235 -1.635 0.1064
## X.6 -0.0020925 0.0011770 -1.778 0.0797 .
## Y.1 -0.4775477 0.1051277 -4.543 2.18e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03317 on 72 degrees of freedom
## Multiple R-squared: 0.2896, Adjusted R-squared: 0.2502
## F-statistic: 7.339 on 4 and 72 DF, p-value: 5.147e-05
testing_ardl6_3 = ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 6, q = 1, remove = list(p = c(0,1,2), q=c()))
summary(testing_ardl6_3)
##
## Time series regression with "ts" data:
## Start = 7, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.124954 -0.010884 0.004603 0.013471 0.145748
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0068364 0.0038837 -1.760 0.0827 .
## X.3 -0.0018820 0.0012039 -1.563 0.1224
## X.4 0.0005702 0.0012013 0.475 0.6365
## X.5 -0.0022063 0.0011372 -1.940 0.0563 .
## X.6 -0.0018226 0.0011781 -1.547 0.1263
## Y.1 -0.4816791 0.1041227 -4.626 1.63e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03285 on 71 degrees of freedom
## Multiple R-squared: 0.3133, Adjusted R-squared: 0.2649
## F-statistic: 6.477 on 5 and 71 DF, p-value: 5.161e-05
testing_ardl6_4 = ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 6, q = 1, remove = list(p = c(0,1), q=c()))
summary(testing_ardl6_4)
##
## Time series regression with "ts" data:
## Start = 7, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.125837 -0.010159 0.005325 0.013508 0.143649
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0070547 0.0039491 -1.786 0.0784 .
## X.2 -0.0004600 0.0012070 -0.381 0.7043
## X.3 -0.0019397 0.0012206 -1.589 0.1165
## X.4 0.0004654 0.0012395 0.375 0.7084
## X.5 -0.0021401 0.0011572 -1.849 0.0686 .
## X.6 -0.0018265 0.0011853 -1.541 0.1278
## Y.1 -0.4823447 0.1047698 -4.604 1.8e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03305 on 70 degrees of freedom
## Multiple R-squared: 0.3147, Adjusted R-squared: 0.2559
## F-statistic: 5.357 on 6 and 70 DF, p-value: 0.0001342
testing_ardl6_5 = ardlDlm(x = scc_test_big$dleaving, y = scc_test_big$d2log_cases, p = 6, q = 1, remove = list(p = c(0), q=c()))
summary(testing_ardl6_5)
##
## Time series regression with "ts" data:
## Start = 7, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.125840 -0.013734 0.002542 0.012845 0.143593
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0061492 0.0039348 -1.563 0.1227
## X.1 0.0022711 0.0013459 1.687 0.0961 .
## X.2 -0.0002032 0.0012010 -0.169 0.8661
## X.3 -0.0015382 0.0012281 -1.253 0.2146
## X.4 0.0001645 0.0012364 0.133 0.8945
## X.5 -0.0019201 0.0011496 -1.670 0.0994 .
## X.6 -0.0014612 0.0011898 -1.228 0.2236
## Y.1 -0.5581706 0.1127559 -4.950 5.04e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03262 on 69 degrees of freedom
## Multiple R-squared: 0.3418, Adjusted R-squared: 0.2751
## F-statistic: 5.12 on 7 and 69 DF, p-value: 0.0001007
leaving and dcases for 4 lags
# keeping only 4 x lags, removing different y lags
testing_ardl4 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dcases, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c()))
summary(testing_ardl4)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.138 -10.351 0.307 6.675 41.859
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.30235 4.22315 2.203 0.0308 *
## X.4 0.14646 0.16042 0.913 0.3643
## Y.1 0.51796 0.11584 4.471 2.8e-05 ***
## Y.2 0.13820 0.13235 1.044 0.2998
## Y.3 0.05266 0.13239 0.398 0.6920
## Y.4 0.11643 0.11735 0.992 0.3244
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.28 on 73 degrees of freedom
## Multiple R-squared: 0.5417, Adjusted R-squared: 0.5103
## F-statistic: 17.26 on 5 and 73 DF, p-value: 3.076e-11
testing_ardl4_1 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dcases, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c(2)))
summary(testing_ardl4_1)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -26.144 -10.278 -0.513 7.007 41.133
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.5673 4.2181 2.268 0.0262 *
## X.4 0.1371 0.1603 0.855 0.3951
## Y.1 0.5738 0.1028 5.581 3.74e-07 ***
## Y.3 0.1028 0.1234 0.833 0.4074
## Y.4 0.1350 0.1161 1.163 0.2484
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.29 on 74 degrees of freedom
## Multiple R-squared: 0.5349, Adjusted R-squared: 0.5097
## F-statistic: 21.27 on 4 and 74 DF, p-value: 1.042e-11
testing_ardl4_2 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dcases, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c(2,3)))
summary(testing_ardl4_2)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -26.098 -11.370 -1.555 6.895 42.376
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.77916 4.20184 2.327 0.0226 *
## X.4 0.12249 0.15898 0.770 0.4434
## Y.1 0.60536 0.09540 6.345 1.52e-08 ***
## Y.4 0.19013 0.09518 1.997 0.0494 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.26 on 75 degrees of freedom
## Multiple R-squared: 0.5305, Adjusted R-squared: 0.5117
## F-statistic: 28.25 on 3 and 75 DF, p-value: 2.493e-12
testing_ardl4_3 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dcases, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c(2,3,4)))
summary(testing_ardl4_3)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.158 -9.306 0.076 6.320 51.786
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.71800 4.25681 2.518 0.0139 *
## X.4 0.04611 0.15732 0.293 0.7703
## Y.1 0.70893 0.08164 8.684 5.39e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.54 on 76 degrees of freedom
## Multiple R-squared: 0.5055, Adjusted R-squared: 0.4925
## F-statistic: 38.85 on 2 and 76 DF, p-value: 2.382e-12
# all x lags, only 1 y lag
testing_ardl4_4 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dcases, p = 4, q = 4, remove = list(p = c(), q=c(2,3,4)))
summary(testing_ardl4_4)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.510 -9.509 -0.167 8.030 47.065
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.01316 4.63573 2.160 0.0341 *
## X.t 1.02445 0.55073 1.860 0.0669 .
## X.1 -1.46539 0.68853 -2.128 0.0367 *
## X.2 0.06459 0.66124 0.098 0.9225
## X.3 -0.46978 0.68276 -0.688 0.4936
## X.4 0.86883 0.48962 1.774 0.0802 .
## Y.1 0.71039 0.08201 8.663 8.88e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.21 on 72 degrees of freedom
## Multiple R-squared: 0.5523, Adjusted R-squared: 0.515
## F-statistic: 14.8 on 6 and 72 DF, p-value: 6.109e-11
# removing x lags with only 1 y lag
testing_ardl4_5 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dcases, p = 4, q = 4, remove = list(p = c(0,1,2,3), q=c(2,3,4)))
summary(testing_ardl4_5)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.158 -9.306 0.076 6.320 51.786
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.71800 4.25681 2.518 0.0139 *
## X.4 0.04611 0.15732 0.293 0.7703
## Y.1 0.70893 0.08164 8.684 5.39e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.54 on 76 degrees of freedom
## Multiple R-squared: 0.5055, Adjusted R-squared: 0.4925
## F-statistic: 38.85 on 2 and 76 DF, p-value: 2.382e-12
testing_ardl4_6= ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dcases, p = 4, q = 4, remove = list(p = c(0,1,2), q=c(2,3,4)))
summary(testing_ardl4_6)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.647 -10.337 0.241 7.421 51.455
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.21141 4.27294 2.390 0.0194 *
## X.3 -0.55253 0.49015 -1.127 0.2632
## X.4 0.55895 0.48128 1.161 0.2492
## Y.1 0.69368 0.08261 8.397 2.09e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.51 on 75 degrees of freedom
## Multiple R-squared: 0.5138, Adjusted R-squared: 0.4943
## F-statistic: 26.42 on 3 and 75 DF, p-value: 9.134e-12
testing_ardl4_7= ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dcases, p = 4, q = 4, remove = list(p = c(0,1), q=c(2,3,4)))
summary(testing_ardl4_7)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.629 -11.017 0.545 7.257 50.039
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.20622 4.36471 2.109 0.0383 *
## X.2 -0.56589 0.51641 -1.096 0.2767
## X.3 -0.05961 0.66478 -0.090 0.9288
## X.4 0.58609 0.48128 1.218 0.2272
## Y.1 0.68726 0.08271 8.310 3.36e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.49 on 74 degrees of freedom
## Multiple R-squared: 0.5215, Adjusted R-squared: 0.4957
## F-statistic: 20.17 on 4 and 74 DF, p-value: 2.895e-11
# looking at different y lags included on their own with all x lags
testing_ardl4_7= ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dcases, p = 4, q = 4, remove = list(p = c(0), q=c(2,3,4)))
summary(testing_ardl4_7)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.550 -11.440 -0.434 8.004 49.430
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.67194 4.53616 1.691 0.095 .
## X.1 -0.64379 0.53702 -1.199 0.234
## X.2 -0.05349 0.66918 -0.080 0.937
## X.3 -0.09676 0.66355 -0.146 0.884
## X.4 0.69998 0.48917 1.431 0.157
## Y.1 0.68791 0.08247 8.342 3.21e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.45 on 73 degrees of freedom
## Multiple R-squared: 0.5308, Adjusted R-squared: 0.4986
## F-statistic: 16.52 on 5 and 73 DF, p-value: 7.072e-11
testing_ardl4_8= ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dcases, p = 4, q = 4, remove = list(p = c(0), q=c(1,2,3)))
summary(testing_ardl4_8)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -33.605 -11.441 -3.405 7.935 44.179
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.653294 5.250084 3.362 0.00123 **
## X.1 -0.003434 0.675157 -0.005 0.99596
## X.2 -0.152528 0.824765 -0.185 0.85379
## X.3 -0.435355 0.815715 -0.534 0.59516
## X.4 0.613803 0.608463 1.009 0.31641
## Y.4 0.491134 0.107465 4.570 1.94e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.81 on 73 degrees of freedom
## Multiple R-squared: 0.2874, Adjusted R-squared: 0.2386
## F-statistic: 5.888 on 5 and 73 DF, p-value: 0.0001261
testing_ardl4_9= ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dcases, p = 4, q = 4, remove = list(p = c(0), q=c(1,2,4)))
summary(testing_ardl4_9)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -36.010 -12.295 -2.812 9.074 48.404
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.4530 5.1167 3.020 0.00348 **
## X.1 0.1272 0.6512 0.195 0.84570
## X.2 -0.3449 0.7915 -0.436 0.66429
## X.3 -0.9082 0.7880 -1.153 0.25283
## X.4 1.1362 0.5774 1.968 0.05291 .
## Y.3 0.5397 0.1010 5.345 9.88e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.12 on 73 degrees of freedom
## Multiple R-squared: 0.3413, Adjusted R-squared: 0.2962
## F-statistic: 7.565 on 5 and 73 DF, p-value: 9.044e-06
testing_ardl4_10= ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dcases, p = 4, q = 4, remove = list(p = c(0), q=c(1,3,4)))
summary(testing_ardl4_10)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -36.559 -9.336 -3.185 7.394 36.846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.01964 4.92482 2.441 0.0171 *
## X.1 0.04675 0.60711 0.077 0.9388
## X.2 -0.94255 0.74948 -1.258 0.2125
## X.3 -0.06290 0.74056 -0.085 0.9325
## X.4 0.92419 0.54338 1.701 0.0932 .
## Y.2 0.60176 0.09306 6.467 9.99e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.1 on 73 degrees of freedom
## Multiple R-squared: 0.4173, Adjusted R-squared: 0.3774
## F-statistic: 10.46 on 5 and 73 DF, p-value: 1.365e-07
leaving and dlog_cases for up to 5 lags
# all y lags, only x lag of 5
testing_ardl5 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0,1,2,3,4), q=c()))
summary(testing_ardl5)
##
## Time series regression with "ts" data:
## Start = 6, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.108106 -0.006086 -0.000262 0.007073 0.111391
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0068988 0.0246441 0.280 0.78034
## X.5 0.0002445 0.0007904 0.309 0.75798
## Y.1 0.3067529 0.1047435 2.929 0.00457 **
## Y.2 0.1859873 0.1059526 1.755 0.08351 .
## Y.3 -0.0460042 0.1024420 -0.449 0.65474
## Y.4 0.4148357 0.0849609 4.883 6.23e-06 ***
## Y.5 0.0041610 0.0808347 0.051 0.95909
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0291 on 71 degrees of freedom
## Multiple R-squared: 0.8557, Adjusted R-squared: 0.8435
## F-statistic: 70.17 on 6 and 71 DF, p-value: < 2.2e-16
# all x lags, only y lag 1
testing_ardl5_1 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(), q=c(2,3,4,5)))
summary(testing_ardl5_1)
##
## Time series regression with "ts" data:
## Start = 6, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.113862 -0.014509 -0.004236 0.013900 0.093738
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.172e-01 2.539e-02 4.617 1.72e-05 ***
## X.t 4.420e-03 1.183e-03 3.738 0.000376 ***
## X.1 -2.029e-03 1.563e-03 -1.298 0.198478
## X.2 3.729e-05 1.456e-03 0.026 0.979634
## X.3 -1.564e-03 1.460e-03 -1.071 0.287756
## X.4 3.189e-03 1.454e-03 2.193 0.031652 *
## X.5 -2.444e-04 1.089e-03 -0.224 0.823131
## Y.1 4.700e-01 1.057e-01 4.445 3.22e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03006 on 70 degrees of freedom
## Multiple R-squared: 0.8482, Adjusted R-squared: 0.833
## F-statistic: 55.87 on 7 and 70 DF, p-value: < 2.2e-16
# all x lags, only y lag 2
testing_ardl5_2 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(), q=c(1,3,4,5)))
summary(testing_ardl5_2)
##
## Time series regression with "ts" data:
## Start = 6, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.143847 -0.013093 -0.002237 0.013402 0.069980
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1259712 0.0237767 5.298 1.29e-06 ***
## X.t 0.0039304 0.0011738 3.348 0.00131 **
## X.1 0.0010518 0.0014714 0.715 0.47708
## X.2 -0.0019492 0.0015316 -1.273 0.20736
## X.3 -0.0015801 0.0014634 -1.080 0.28397
## X.4 0.0023156 0.0014536 1.593 0.11566
## X.5 0.0003678 0.0010576 0.348 0.72909
## Y.2 0.4454660 0.1011695 4.403 3.75e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03012 on 70 degrees of freedom
## Multiple R-squared: 0.8476, Adjusted R-squared: 0.8323
## F-statistic: 55.6 on 7 and 70 DF, p-value: < 2.2e-16
# adding in x lags
testing_ardl5_3 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0), q=c(1,3,4,5)))
summary(testing_ardl5_3)
##
## Time series regression with "ts" data:
## Start = 6, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.151173 -0.016913 -0.004573 0.012925 0.080272
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1172594 0.0252765 4.639 1.56e-05 ***
## X.1 0.0040260 0.0012546 3.209 0.002000 **
## X.2 -0.0022846 0.0016346 -1.398 0.166568
## X.3 -0.0001919 0.0015010 -0.128 0.898610
## X.4 0.0019706 0.0015507 1.271 0.207958
## X.5 0.0002684 0.0011307 0.237 0.813074
## Y.2 0.4267191 0.1080348 3.950 0.000182 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03222 on 71 degrees of freedom
## Multiple R-squared: 0.8231, Adjusted R-squared: 0.8082
## F-statistic: 55.08 on 6 and 71 DF, p-value: < 2.2e-16
testing_ardl5_4 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0,1), q=c(1,3,4,5)))
summary(testing_ardl5_4)
##
## Time series regression with "ts" data:
## Start = 6, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.156426 -0.013784 -0.005954 0.011286 0.088204
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1184173 0.0268562 4.409 3.56e-05 ***
## X.2 0.0010913 0.0013294 0.821 0.41439
## X.3 -0.0005294 0.0015910 -0.333 0.74029
## X.4 0.0034968 0.0015684 2.230 0.02890 *
## X.5 -0.0002933 0.0011870 -0.247 0.80556
## Y.2 0.3706024 0.1132847 3.271 0.00164 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03423 on 72 degrees of freedom
## Multiple R-squared: 0.7975, Adjusted R-squared: 0.7834
## F-statistic: 56.71 on 5 and 72 DF, p-value: < 2.2e-16
testing_ardl5_5 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0,1,2), q=c(1,3,4,5)))
summary(testing_ardl5_5)
##
## Time series regression with "ts" data:
## Start = 6, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.15622 -0.01280 -0.00626 0.01237 0.09327
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1104363 0.0249789 4.421 3.36e-05 ***
## X.3 0.0002322 0.0012897 0.180 0.857639
## X.4 0.0034391 0.0015633 2.200 0.030979 *
## X.5 -0.0001679 0.0011745 -0.143 0.886738
## Y.2 0.3959393 0.1087558 3.641 0.000505 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03416 on 73 degrees of freedom
## Multiple R-squared: 0.7956, Adjusted R-squared: 0.7844
## F-statistic: 71.04 on 4 and 73 DF, p-value: < 2.2e-16
testing_ardl5_6 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0,1,2,3), q=c(1,3,4,5)))
summary(testing_ardl5_6)
##
## Time series regression with "ts" data:
## Start = 6, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.155635 -0.012711 -0.006336 0.012753 0.094686
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1086353 0.0227376 4.778 8.76e-06 ***
## X.4 0.0036217 0.0011815 3.065 0.003034 **
## X.5 -0.0001774 0.0011656 -0.152 0.879445
## Y.2 0.4024312 0.1019295 3.948 0.000178 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03393 on 74 degrees of freedom
## Multiple R-squared: 0.7955, Adjusted R-squared: 0.7872
## F-statistic: 95.96 on 3 and 74 DF, p-value: < 2.2e-16
testing_ardl5_7 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0,1,2,3,4), q=c(1,3,4,5)))
summary(testing_ardl5_7)
##
## Time series regression with "ts" data:
## Start = 6, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.156542 -0.012049 -0.005309 0.009135 0.128707
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0849432 0.0225490 3.767 0.000327 ***
## X.5 0.0026653 0.0007446 3.579 0.000608 ***
## Y.2 0.4925323 0.1029179 4.786 8.35e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03578 on 75 degrees of freedom
## Multiple R-squared: 0.7695, Adjusted R-squared: 0.7634
## F-statistic: 125.2 on 2 and 75 DF, p-value: < 2.2e-16
# trying different single y lags with only one x lag (4)
testing_ardl5_9 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0,1,2,3,5), q=c(2,3,4,5)))
summary(testing_ardl5_9)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.128342 -0.013379 -0.006118 0.008368 0.123906
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0959359 0.0213823 4.487 2.53e-05 ***
## X.4 0.0030422 0.0007068 4.304 4.94e-05 ***
## Y.1 0.4995973 0.0975490 5.122 2.23e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03397 on 76 degrees of freedom
## Multiple R-squared: 0.8076, Adjusted R-squared: 0.8026
## F-statistic: 159.5 on 2 and 76 DF, p-value: < 2.2e-16
testing_ardl5_10 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0,1,2,3,5), q=c(1,3,4,5)))
summary(testing_ardl5_10)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.159944 -0.013787 -0.007115 0.012500 0.129400
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1246404 0.0232551 5.360 8.63e-07 ***
## X.4 0.0039543 0.0007644 5.173 1.81e-06 ***
## Y.2 0.3540167 0.1056597 3.351 0.00126 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03677 on 76 degrees of freedom
## Multiple R-squared: 0.7745, Adjusted R-squared: 0.7686
## F-statistic: 130.5 on 2 and 76 DF, p-value: < 2.2e-16
testing_ardl5_11 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0,1,2,3,5), q=c(1,2,4,5)))
summary(testing_ardl5_11)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.146867 -0.013290 -0.006858 0.006968 0.117459
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1268207 0.0219254 5.784 1.53e-07 ***
## X.4 0.0040316 0.0007228 5.578 3.57e-07 ***
## Y.3 0.3261027 0.0935727 3.485 0.00082 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03658 on 76 degrees of freedom
## Multiple R-squared: 0.7769, Adjusted R-squared: 0.771
## F-statistic: 132.3 on 2 and 76 DF, p-value: < 2.2e-16
testing_ardl5_12 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0,1,2,3,5), q=c(1,2,3,5)))
summary(testing_ardl5_12)
##
## Time series regression with "ts" data:
## Start = 5, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.12448 -0.01460 -0.00846 0.01312 0.16135
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1321876 0.0215795 6.126 3.69e-08 ***
## X.4 0.0041998 0.0007128 5.892 9.82e-08 ***
## Y.4 0.3024591 0.0921180 3.283 0.00155 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03687 on 76 degrees of freedom
## Multiple R-squared: 0.7734, Adjusted R-squared: 0.7674
## F-statistic: 129.7 on 2 and 76 DF, p-value: < 2.2e-16
testing_ardl5_13 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0,1,2,3,5), q=c(1,2,3,4)))
summary(testing_ardl5_13)
##
## Time series regression with "ts" data:
## Start = 6, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.109916 -0.016075 -0.007203 0.011628 0.128675
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1491966 0.0176869 8.435 1.77e-12 ***
## X.4 0.0047611 0.0005858 8.128 6.82e-12 ***
## Y.5 0.2057945 0.0751397 2.739 0.0077 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03554 on 75 degrees of freedom
## Multiple R-squared: 0.7727, Adjusted R-squared: 0.7666
## F-statistic: 127.5 on 2 and 75 DF, p-value: < 2.2e-16
# compare to just having different x values on their own with single y lag
testing_ardl5_14 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0,4,2,3,5), q=c(1,2,3,4)))
summary(testing_ardl5_14)
##
## Time series regression with "ts" data:
## Start = 6, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.097008 -0.020340 -0.005162 0.017580 0.116528
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1505429 0.0154646 9.735 6.04e-15 ***
## X.1 0.0049111 0.0005201 9.442 2.16e-14 ***
## Y.5 0.3136484 0.0589194 5.323 1.02e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03294 on 75 degrees of freedom
## Multiple R-squared: 0.8047, Adjusted R-squared: 0.7995
## F-statistic: 154.5 on 2 and 75 DF, p-value: < 2.2e-16
testing_ardl5_15 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0,4,1,3,5), q=c(1,2,3,4)))
summary(testing_ardl5_15)
##
## Time series regression with "ts" data:
## Start = 6, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.110907 -0.018323 -0.006812 0.013075 0.122121
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1421199 0.0170519 8.335 2.75e-12 ***
## X.2 0.0045664 0.0005687 8.030 1.05e-11 ***
## Y.5 0.2959853 0.0676737 4.374 3.88e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03574 on 75 degrees of freedom
## Multiple R-squared: 0.7701, Adjusted R-squared: 0.764
## F-statistic: 125.6 on 2 and 75 DF, p-value: < 2.2e-16
testing_ardl5_16 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0,4,1,2,5), q=c(1,2,3,4)))
summary(testing_ardl5_16)
##
## Time series regression with "ts" data:
## Start = 6, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.114060 -0.016927 -0.006633 0.009952 0.122076
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1393408 0.0169013 8.244 4.09e-12 ***
## X.3 0.0044608 0.0005618 7.940 1.55e-11 ***
## Y.5 0.2761199 0.0699722 3.946 0.000177 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03592 on 75 degrees of freedom
## Multiple R-squared: 0.7677, Adjusted R-squared: 0.7615
## F-statistic: 124 on 2 and 75 DF, p-value: < 2.2e-16
testing_ardl5_17 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 5, q = 5, remove = list(p = c(0,4,1,2,3), q=c(1,2,3,4)))
summary(testing_ardl5_17)
##
## Time series regression with "ts" data:
## Start = 6, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.107410 -0.019604 -0.008113 0.010532 0.173450
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1476161 0.0234921 6.284 1.98e-08 ***
## X.5 0.0046328 0.0007758 5.971 7.30e-08 ***
## Y.5 0.1697628 0.1003031 1.692 0.0947 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04012 on 75 degrees of freedom
## Multiple R-squared: 0.7102, Adjusted R-squared: 0.7025
## F-statistic: 91.92 on 2 and 75 DF, p-value: < 2.2e-16
Compare with up to 10 lags in x, 5 in y
# all y, all x
testing_ardl10 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 10, q = 5, remove = list(p = c(), q=c()))
summary(testing_ardl10)
##
## Time series regression with "ts" data:
## Start = 11, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.052327 -0.009648 -0.001067 0.009745 0.040967
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.641e-02 2.633e-02 2.522 0.01453 *
## X.t 2.840e-03 8.595e-04 3.304 0.00167 **
## X.1 -1.285e-05 1.018e-03 -0.013 0.98997
## X.2 -1.956e-05 9.888e-04 -0.020 0.98429
## X.3 -5.707e-04 1.008e-03 -0.566 0.57341
## X.4 -2.560e-04 1.000e-03 -0.256 0.79893
## X.5 -5.262e-04 1.011e-03 -0.521 0.60472
## X.6 -1.029e-03 9.663e-04 -1.064 0.29174
## X.7 2.332e-03 9.977e-04 2.338 0.02300 *
## X.8 -1.902e-04 1.030e-03 -0.185 0.85414
## X.9 -8.042e-04 9.888e-04 -0.813 0.41951
## X.10 5.414e-04 7.989e-04 0.678 0.50072
## Y.1 3.822e-01 1.324e-01 2.885 0.00554 **
## Y.2 1.441e-01 1.166e-01 1.236 0.22151
## Y.3 -1.363e-01 9.442e-02 -1.444 0.15440
## Y.4 3.329e-01 9.024e-02 3.689 0.00051 ***
## Y.5 -3.219e-04 8.465e-02 -0.004 0.99698
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01745 on 56 degrees of freedom
## Multiple R-squared: 0.937, Adjusted R-squared: 0.919
## F-statistic: 52.03 on 16 and 56 DF, p-value: < 2.2e-16
# all x, only one y
testing_ardl10_1 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 10, q = 5, remove = list(p = c(), q=c(1,2,3,4)))
summary(testing_ardl10_1)
##
## Time series regression with "ts" data:
## Start = 11, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.040717 -0.012324 -0.002844 0.010063 0.082275
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1626336 0.0205950 7.897 7.35e-11 ***
## X.t 0.0026675 0.0010335 2.581 0.01231 *
## X.1 0.0009585 0.0012016 0.798 0.42823
## X.2 0.0009341 0.0011911 0.784 0.43598
## X.3 -0.0011408 0.0011812 -0.966 0.33804
## X.4 0.0012945 0.0011562 1.120 0.26731
## X.5 -0.0015152 0.0012510 -1.211 0.23056
## X.6 -0.0007200 0.0011749 -0.613 0.54230
## X.7 0.0008758 0.0012106 0.723 0.47221
## X.8 0.0016138 0.0011908 1.355 0.18041
## X.9 -0.0008440 0.0012060 -0.700 0.48677
## X.10 0.0013512 0.0009003 1.501 0.13865
## Y.5 0.2704950 0.0820016 3.299 0.00164 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02196 on 60 degrees of freedom
## Multiple R-squared: 0.893, Adjusted R-squared: 0.8716
## F-statistic: 41.75 on 12 and 60 DF, p-value: < 2.2e-16
# testing single x values with only one y
testing_ardl10_2 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 10, q = 5, remove = list(p = c(0,1,2,3,4,5,6,7,8,9), q=c(1,2,3,4)))
summary(testing_ardl10_2)
##
## Time series regression with "ts" data:
## Start = 11, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.071381 -0.008366 -0.002362 0.007912 0.161808
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0866566 0.0176744 4.903 5.90e-06 ***
## X.10 0.0027729 0.0005866 4.727 1.14e-05 ***
## Y.5 0.3389148 0.0861173 3.936 0.000193 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03005 on 70 degrees of freedom
## Multiple R-squared: 0.7664, Adjusted R-squared: 0.7598
## F-statistic: 114.9 on 2 and 70 DF, p-value: < 2.2e-16
testing_ardl10_3 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 10, q = 5, remove = list(p = c(0,1,2,3,4,5,6,7,8,10), q=c(1,2,3,4)))
summary(testing_ardl10_3)
##
## Time series regression with "ts" data:
## Start = 10, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.075595 -0.009953 -0.002685 0.009153 0.157696
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0927292 0.0190856 4.859 6.83e-06 ***
## X.9 0.0029620 0.0006303 4.699 1.24e-05 ***
## Y.5 0.3308754 0.0886666 3.732 0.00038 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03002 on 71 degrees of freedom
## Multiple R-squared: 0.783, Adjusted R-squared: 0.7769
## F-statistic: 128.1 on 2 and 71 DF, p-value: < 2.2e-16
testing_ardl10_4 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 10, q = 5, remove = list(p = c(0,1,2,3,4,5,6,7,9,10), q=c(1,2,3,4)))
summary(testing_ardl10_4)
##
## Time series regression with "ts" data:
## Start = 9, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.073893 -0.012403 -0.003338 0.007672 0.140461
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1147839 0.0201761 5.689 2.57e-07 ***
## X.8 0.0037118 0.0006638 5.592 3.80e-07 ***
## Y.5 0.2834895 0.0919710 3.082 0.00291 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03162 on 72 degrees of freedom
## Multiple R-squared: 0.7912, Adjusted R-squared: 0.7854
## F-statistic: 136.4 on 2 and 72 DF, p-value: < 2.2e-16
testing_ardl10_5 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 10, q = 5, remove = list(p = c(0,1,2,3,4,5,6,8,9,10), q=c(1,2,3,4)))
summary(testing_ardl10_5)
##
## Time series regression with "ts" data:
## Start = 8, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.064374 -0.015042 -0.001944 0.009414 0.125368
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1297144 0.0186653 6.950 1.29e-09 ***
## X.7 0.0042094 0.0006127 6.870 1.81e-09 ***
## Y.5 0.2252478 0.0847603 2.657 0.00967 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02931 on 73 degrees of freedom
## Multiple R-squared: 0.8184, Adjusted R-squared: 0.8134
## F-statistic: 164.4 on 2 and 73 DF, p-value: < 2.2e-16
testing_ardl10_6 = ardlDlm(x = scc_test_big$leaving_home_dif, y = scc_test_big$dlog_cases, p = 10, q = 5, remove = list(p = c(0,1,2,3,4,5,7,8,9,10), q=c(1,2,3,4)))
summary(testing_ardl10_6)
##
## Time series regression with "ts" data:
## Start = 7, End = 83
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.068762 -0.012592 -0.005739 0.007397 0.163328
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1021358 0.0194043 5.264 1.33e-06 ***
## X.6 0.0032769 0.0006406 5.115 2.38e-06 ***
## Y.5 0.3481950 0.0828006 4.205 7.22e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03235 on 74 degrees of freedom
## Multiple R-squared: 0.7886, Adjusted R-squared: 0.7829
## F-statistic: 138 on 2 and 74 DF, p-value: < 2.2e-16