First chunk contains all the libraries needed to run the code and some important global variables. Second chunk contains all the instance variables needed to set up the snap resources map.
library(shinydashboard)
library(tidyverse)
library(leaflet)
library(shiny)
library(Rcpp)
library(sf)
library(tmaptools)
library(htmlwidgets)
library(googlesheets4)
library(RColorBrewer)
library(lubridate)
library(purrr)
library(shinythemes)
library(censusapi)
library(rgeos)
library(tidycensus)
library(tigris)
library(usmap)
library(colorspace)
library(ggplot2)
library(reshape2)
library(formattable)
library(plotly)
library(lubridate)
library(DT)
Sys.setenv(CENSUS_KEY="c8aa67e4086b4b5ce3a8717f59faa9a28f611dab")
github_directory <- "https://raw.githubusercontent.com/stanfordfuturebay/stanfordfuturebay.github.io/master/data/"
github_rds <- "https://github.com/stanfordfuturebay/stanfordfuturebay.github.io/blob/master/data/"
options(
tigris_class = "sf",
tigris_use_cache = TRUE
)
mapbox_sat <- "https://api.mapbox.com/styles/v1/samanyl/ck9hpl0sm0fuq1ip8yfb2yrn8/tiles/256/{z}/{x}/{y}@2x?access_token=pk.eyJ1Ijoic2FtYW55bCIsImEiOiJjazlocGNvYWgxMHhxM2Rud2pxdzVnMnp2In0.D_j3K9tXiEddHH-8UUkeZQ"
mapbox_satAtt <- "© <a href='https://www.mapbox.com/map-feedback/'>Mapbox</a> Satellite Map"
bay_county_names <-
c(
"Alameda",
"Contra Costa",
"Marin",
"Napa",
"San Francisco",
"San Mateo",
"Santa Clara",
"Solano",
"Sonoma"
)
setwd("C:/Users/liusa/github/covid19/Sam_Liu/SNAP")
col <- c("#5c2a9d","#e2598b","#ffd31d","#f57b51", "#1f4068", "#f78259")
# bay_counties <-
# counties("CA", cb = F, progress_bar=F) %>%
# filter(NAME %in% bay_county_names)
#
# zctas <-
# zctas(cb=F)
#
# bay_zctas <-
# zctas %>%
# dplyr::select(ZCTA5CE10) %>%
# st_join(bay_counties %>% dplyr::select(geometry),left=F)
#
# saveRDS(bay_zctas, file = "bay_zctas.rds")
bay_counties <- readRDS(gzcon(url(paste0(github_rds,"bay_counties.rds?raw=true")))) %>%
arrange(NAME) %>%
mutate(SNAP_HH=c(58880,30792,6263,2881,40592,11724,45606,20567,15779)) %>%
mutate(SNAP_participants=c(102011,58374,9556,5342,57944,20658,78848,36782,26005)) %>%
dplyr::select(NAME,geometry,SNAP_HH, SNAP_participants)
gs4_deauth()
retailers <- read_sheet("1tvMBCWNeh7kyyKklntmWfV1zNJx8bN-KxHIYmaULZxg")
retailers$long <- as.numeric(retailers$long)
retailers$lat <- as.numeric(retailers$lat)
snap <- retailers %>% filter(type == "SNAP_accepting_retailer")
wic <- retailers %>% filter(type == "WIC_only_store")
snap_wic <- retailers %>% filter(type == "WIC_SNAP_retailer")
snap_restaurant <- retailers %>% filter(type=="SNAP_restaurant")
snap_farmers <- retailers %>% filter(type=="SNAP_farmers_market")
snap_curbside <- snap %>% filter(!is.na(curbside_pickup))
wic_curbside <- wic %>% filter(!is.na(curbside_pickup))
snapwic_curbside <- snap_wic %>% filter(!is.na(curbside_pickup))
snaprest_curbside <- snap_restaurant %>% filter(!is.na(curbside_pickup))
snapfarm_curbside <- snap_farmers %>% filter(!is.na(curbside_pickup))
snap_delivery <- snap %>% filter(!is.na(delivery))
wic_delivery <- wic %>% filter(!is.na(delivery))
snapwic_delivery <- snap_wic %>% filter(!is.na(delivery))
snaprest_delivery <- snap_restaurant %>% filter(!is.na(delivery))
snapfarm_delivery <- snap_farmers %>% filter(!is.na(delivery))
snap_senior <- snap %>% filter(!is.na(senior_hours))
wic_senior <- wic %>% filter(!is.na(senior_hours))
snapwic_senior <- snap_wic %>% filter(!is.na(senior_hours))
snaprest_senior <- snap_restaurant %>% filter(!is.na(senior_hours))
snapfarm_senior <- snap_farmers %>% filter(!is.na(senior_hours))
snapIcon <- makeIcon(
iconUrl = "baymap/bag.png",
iconWidth=25,iconHeight=25)
wicIcon <- makeIcon(
iconUrl = "baymap/love.png",
iconWidth=30,iconHeight=30)
snapwicIcon <- makeIcon(
iconUrl = "baymap/snapwic.png",
iconWidth=30,iconHeight=30)
snaprestIcon <- makeIcon(
iconUrl = "baymap/cutlery.png",
iconWidth=25,iconHeight=25)
snapfarmIcon <- makeIcon(
iconUrl = "baymap/chicken.png",
iconWidth=25,iconHeight=25)
homeIcon <- makeIcon(
iconUrl = "baymap/internet.png",
iconWidth=25,iconHeight=25)
html_legend <- "<img src='https://raw.githubusercontent.com/stanfordfuturebay/stanfordfuturebay.github.io/master/data/bag.png' height='30' width='30'> SNAP Only Retailers<br/><img src='https://raw.githubusercontent.com/stanfordfuturebay/stanfordfuturebay.github.io/master/data/love.png' height='30' width='30'> WIC Only Retailers<br/><img src='https://raw.githubusercontent.com/stanfordfuturebay/stanfordfuturebay.github.io/master/data/snapwic.png' height='30' width='30'> SNAP and WIC Accepting Retailers<br/><img src='https://raw.githubusercontent.com/stanfordfuturebay/stanfordfuturebay.github.io/master/data/money.png' height='30' width='30'> Cash EBT Withdrawal Locations<br/><img src='https://raw.githubusercontent.com/stanfordfuturebay/stanfordfuturebay.github.io/master/data/cutlery.png' height='30' width='30'> SNAP Accepting Restaurants<br/><img src='https://raw.githubusercontent.com/stanfordfuturebay/stanfordfuturebay.github.io/master/data/chicken.png' height='30' width='30'> SNAP Accepting Farmers Markets"
cluster <-
markerClusterOptions(
showCoverageOnHover=F,
spiderfyOnMaxZoom=F,
disableClusteringAtZoom=14
)
# time format --> format(dataset$____, %I:%M%p)
pop <- function(dataset){
result <-
paste0(
ifelse(
is.na(dataset$web_link),
paste0("<strong>",dataset$site_name,"</strong><br>"),
paste0("<a href='",dataset$web_link,"' target='_blank'><strong>",dataset$site_name,"</strong></a><br>")
),
dataset$address, "<br>",
dataset$city,", ",
dataset$state," ",
dataset$zip,
"<br><br><img src='https://raw.githubusercontent.com/stanfordfuturebay/stanfordfuturebay.github.io/master/data/pin.png' height='12' width='12'>
<a href='https://www.google.com/maps/dir/?api=1&destination=",
dataset$lat,",",
dataset$long,"' target='_blank'>Directions To Here</a>",
'<br><br><strong>Hours of Operation: </strong><br>',
dataset$days_hours_line1,
ifelse(
is.na(dataset$days_hours_line2),
"",
paste0("<br>",dataset$days_hours_line2)
),
ifelse(
is.na(dataset$days_hours_line3),
"",
paste0("<br>",dataset$days_hours_line3)
),
ifelse(
is.na(dataset$days_hours_line4),
"",
paste0("<br>",dataset$days_hours_line4)
),
"<br><br><strong>Contact Information:</strong><br>",
ifelse(
is.na(dataset$web_link),
"",
paste0("<a href='",dataset$web_link,"' target='_blank'>Website</a><br>")
),
dataset$phone,"<br>",
ifelse(
is.na(dataset$notes),
"",
paste0("<br><strong>Notes: </strong>",dataset$notes,"<br>")
),
ifelse(
is.na(dataset$senior_hours),
"",
paste0(
'<br><strong style="color:red">** SPECIAL SENIOR HOURS ** </strong><br>',
dataset$senior_hours)
)
)
return(result)
}
This was just to test the layout of circle icons - personal side project.
Official snap resources prototype of bay map using Charlie’s data in Google Sheets.
mpi <- leaflet() %>%
addProviderTiles(providers$CartoDB.VoyagerLabelsUnder, group = "Default") %>%
addTiles(urlTemplate = mapbox_sat, attribution = mapbox_satAtt, group = "Satellite") %>%
addMarkers(
lng = snap$long,
lat = snap$lat,
clusterOptions = cluster,
popup = pop(snap),
icon = snapIcon,
group = "SNAP Only Retailers"
) %>%
addMarkers(
lng = wic$long,
lat = wic$lat,
clusterOptions = cluster,
popup = pop(wic),
icon = wicIcon,
group = "WIC Only Retailers"
) %>%
addMarkers(
lng = snap_wic$long,
lat = snap_wic$lat,
clusterOptions = cluster,
popup = pop(snap_wic),
icon = snapwicIcon,
group = "SNAP and WIC Accepting Retailers"
) %>%
addMarkers(
lng = snap_restaurant$long,
lat = snap_restaurant$lat,
clusterOptions = cluster,
popup = pop(snap_restaurant),
icon = snaprestIcon,
group = "SNAP Accepting Restaurants"
) %>%
addMarkers(
lng = snap_farmers$long,
lat = snap_farmers$lat,
clusterOptions = cluster,
popup = pop(snap_farmers),
icon = snapfarmIcon,
group = "SNAP Accepting Farmers Markets"
) %>%
addMarkers(
lng = snap_curbside$long,
lat = snap_curbside$lat,
clusterOptions = cluster,
popup = pop(snap_curbside),
icon = snapIcon,
group = "Offers Curbside Pick-up"
) %>%
addMarkers(
lng = wic_curbside$long,
lat = wic_curbside$lat,
clusterOptions = cluster,
popup = pop(wic_curbside),
icon = wicIcon,
group = "Offers Curbside Pick-up"
) %>%
addMarkers(
lng = snapwic_curbside$long,
lat = snapwic_curbside$lat,
clusterOptions = cluster,
popup = pop(snapwic_curbside),
icon = snapwicIcon,
group = "Offers Curbside Pick-up"
) %>%
addMarkers(
lng = snaprest_curbside$long,
lat = snaprest_curbside$lat,
clusterOptions = cluster,
popup = pop(snaprest_curbside),
icon = snaprestIcon,
group = "Offers Curbside Pick-up"
) %>%
addMarkers(
lng = snapfarm_curbside$long,
lat = snapfarm_curbside$lat,
clusterOptions = cluster,
popup = pop(snapfarm_curbside),
icon = snapfarmIcon,
group = "Offers Curbside Pick-up"
) %>%
addMarkers(
lng = snap_delivery$long,
lat = snap_delivery$lat,
clusterOptions = cluster,
popup = pop(snap_delivery),
icon = snapIcon,
group = "Offers CSA Box Delivery"
) %>%
addMarkers(
lng = wic_delivery$long,
lat = wic_delivery$lat,
clusterOptions = cluster,
popup = pop(wic_delivery),
icon = wicIcon,
group = "Offers CSA Box Delivery"
) %>%
addMarkers(
lng = snapwic_delivery$long,
lat = snapwic_delivery$lat,
clusterOptions = cluster,
popup = pop(snapwic_delivery),
icon = snapwicIcon,
group = "Offers CSA Box Delivery"
) %>%
addMarkers(
lng = snaprest_delivery$long,
lat = snaprest_delivery$lat,
clusterOptions = cluster,
popup = pop(snaprest_delivery),
icon = snaprestIcon,
group = "Offers CSA Box Delivery"
) %>%
addMarkers(
lng = snapfarm_delivery$long,
lat = snapfarm_delivery$lat,
clusterOptions = cluster,
popup = pop(snapfarm_delivery),
icon = snapfarmIcon,
group = "Offers CSA Box Delivery"
) %>%
addMarkers(
lng = snap_senior$long,
lat = snap_senior$lat,
clusterOptions = cluster,
popup = pop(snap_senior),
icon = snapIcon,
group = "Offers Senior Hours"
) %>%
addMarkers(
lng = wic_senior$long,
lat = wic_senior$lat,
clusterOptions = cluster,
popup = pop(wic_senior),
icon = wicIcon,
group = "Offers Delivery"
) %>%
addMarkers(
lng = snapwic_senior$long,
lat = snapwic_senior$lat,
clusterOptions = cluster,
popup = pop(snapwic_senior),
icon = snapwicIcon,
group = "Offers Delivery"
) %>%
addMarkers(
lng = snaprest_senior$long,
lat = snaprest_senior$lat,
clusterOptions = cluster,
popup = pop(snaprest_senior),
icon = snaprestIcon,
group = "Offers Delivery"
) %>%
addMarkers(
lng = snapfarm_senior$long,
lat = snapfarm_senior$lat,
clusterOptions = cluster,
popup = pop(snapfarm_senior),
icon = snapfarmIcon,
group = "Offers Delivery"
) %>%
addPolygons(
data = bay_counties,
fillOpacity = 0,
color = "black",
weight=2,
dashArray = 3,
label = as.character(bay_counties$NAME),
labelOptions = labelOptions(noHide = T, textOnly = TRUE,
style=list('font-weight'='bold','text-transform'='uppercase')),
group = "Bay Area County Lines"
) %>%
addLayersControl(
baseGroups = c("Default","Satellite"),
overlayGroups = c("Bay Area County Lines", "SNAP Only Retailers","WIC Only Retailers",
"SNAP and WIC Accepting Retailers","Cash EBT Withdrawal Locations",
"SNAP Accepting Restaurants","SNAP Accepting Farmers Markets",
"Offers Curbside Pick-up", "Offers Delivery","Offers Senior Hours")
) %>%
addControl(
html=html_legend,
position="bottomleft") %>%
hideGroup(c("Offers Curbside Pick-up", "Offers Delivery","Offers Senior Hours", "Bay Area County Lines"))
mpi
Table that reflects the number of SNAP users per county in the Bay Area.
baymap_tbl <-
bay_counties %>%
as.data.frame() %>%
dplyr::select(-geometry) %>%
dplyr::rename("County"="NAME","Total SNAP Users by Household"="SNAP_HH","Total Individual SNAP Users"="SNAP_participants") %>%
formattable(align = c(rep("c")))
baymap_tbl$`Total SNAP Users by Household` <- comma(baymap_tbl$`Total SNAP Users by Household`,format="d")
baymap_tbl$`Total Individual SNAP Users` <- comma(baymap_tbl$`Total Individual SNAP Users`,format="d")
baymap_tbl
County | Total SNAP Users by Household | Total Individual SNAP Users |
---|---|---|
Alameda | 58,880 | 102,011 |
Contra Costa | 30,792 | 58,374 |
Marin | 6,263 | 9,556 |
Napa | 2,881 | 5,342 |
San Francisco | 40,592 | 57,944 |
San Mateo | 11,724 | 20,658 |
Santa Clara | 45,606 | 78,848 |
Solano | 20,567 | 36,782 |
Sonoma | 15,779 | 26,005 |
Using Facteus - Safegraph data to identify the top 10 2020 merchant category codes (MCC) spending data and cross-reference those to the spending data for 2019 for the same MCCs.
# spending distribution of products (bar charts)
# spending_MCC_sum <-
# spending_MCC %>%
# mutate(year=substr(date,1,4)) %>%
# mutate(month = substr(date,6,7)) %>%
# group_by(year,month,MCC) %>%
# summarize(
# mean=mean(as.numeric(total_spent)),
# sum=sum(as.numeric(total_spent)),
# transactions=sum(as.numeric(transaction_counts)),
# avg_transactions=mean(as.numeric(transaction_counts)))
#
# spending_MCC_1920 <-
# spending_MCC_sum %>%
# filter(year %in% c("2019","2020"), month %in% c("01","02","03","04"), MCC > 0)
#
# spending_MCC_1920 <-
# spending_MCC_1920[order(spending_MCC_1920$MCC),]
#
# spending_MCC_1920 <-
# spending_MCC_1920[-c(1,2,3,4),]
#
# saveRDS(spending_MCC_1920,"baymap/spending_MCC_1920.rds")
#
# mcc_codes <-
# read_csv("https://raw.githubusercontent.com/greggles/mcc-codes/master/mcc_codes.csv") %>%
# dplyr::select(
# MCC = mcc,
# label = edited_description
# ) %>%
# saveRDS("baymap/mcc_codes.rds")
spending_MCC_1920 <- readRDS("baymap/spending_MCC_1920.rds")
mcc_codes <- readRDS("baymap/mcc_codes.rds")
plot_month <- function(m,abbr) {
spend20 <-
spending_MCC_1920 %>%
filter(month==m,year=="2020")
spend1920 <-
spending_MCC_1920 %>%
filter(month==m,year=="2019") %>%
right_join(spend20,by=c("MCC","month"),suffix=c("_2019","_2020")) %>%
filter(!is.na(transactions_2019) & !is.na(transactions_2020) & !is.na(year_2019) & !is.na(year_2020)) %>%
arrange(transactions_2020)
spend1920 <-
spend1920 %>%
tail(10) %>%
dplyr::select(year_2019,year_2020,transactions_2019,transactions_2020,MCC)
spend1920 <- spend1920[c("MCC", "year_2019", "year_2020", "transactions_2019", "transactions_2020")]
spend20 <-
spend1920 %>%
dplyr::select(year_2020,transactions_2020,MCC) %>%
dplyr::rename("year" = "year_2020","transactions"="transactions_2020")
spend19 <-
spend1920 %>%
dplyr::select(year_2019,transactions_2019,MCC) %>%
dplyr::rename("year" = "year_2019","transactions"="transactions_2019")
spend1920_plt <-
spend19 %>%
full_join(spend20) %>%
left_join(mcc_codes,by=("MCC")) %>%
ungroup()
plt <-
(ggplot(spend1920_plt,aes(x=MCC,y=transactions,fill=year,group=year,text=paste0(label,": ",transactions))) +
scale_fill_brewer(palette="Paired") +
geom_bar(stat="identity",position=position_dodge()) +
labs(title=abbr,y= "Total Transactions", x = "MCC") +
coord_flip() +
theme_minimal() +
theme(legend.position = "top")) %>%
ggplotly(tooltip="text") %>%
config(displayModeBar = F)%>%
layout(legend = list(orientation="h",x = 0.4, y = 1.1))
spend1920_tbl <-
spend1920 %>%
left_join(mcc_codes,by=("MCC")) %>%
dplyr::select(MCC, label, transactions_2019,transactions_2020) %>%
arrange(MCC) %>%
dplyr::rename("2019" = "transactions_2019","2020"="transactions_2020","Description"="label") %>%
formattable(align = c("c","l","c","c"))
values <- list("plt" = plt,"tbl" = spend1920_tbl)
return(values)
}
jan <- plot_month("01","Jan")
jan$plt
jan$tbl
MCC | Description | 2019 | 2020 |
---|---|---|---|
4121 | Taxicabs and Limousines | 81206 | 74901 |
4829 | Money Orders – Wire Transfer | 13581 | 43782 |
5411 | Grocery Stores, Supermarkets | 152744 | 189982 |
5499 | Misc. Food Stores – Convenience Stores and Specialty Markets | 40627 | 49610 |
5541 | Service Stations ( with or without ancillary services) | 130722 | 189541 |
5542 | Automated Fuel Dispensers | 44456 | 43278 |
5812 | Eating places and Restaurants | 139639 | 150149 |
5814 | Fast Food Restaurants | 236911 | 300474 |
5999 | Miscellaneous and Specialty Retail Stores | 204483 | 179750 |
6011 | Financial Institutions – Manual Cash Disbursements | 45488 | 66778 |
feb <- plot_month("02","Feb")
feb$plt
feb$tbl
MCC | Description | 2019 | 2020 |
---|---|---|---|
4121 | Taxicabs and Limousines | 84758 | 89658 |
4829 | Money Orders – Wire Transfer | 15253 | 44139 |
5411 | Grocery Stores, Supermarkets | 151210 | 160088 |
5499 | Misc. Food Stores – Convenience Stores and Specialty Markets | 41143 | 56096 |
5541 | Service Stations ( with or without ancillary services) | 125513 | 142621 |
5542 | Automated Fuel Dispensers | 42562 | 49137 |
5812 | Eating places and Restaurants | 144215 | 186259 |
5814 | Fast Food Restaurants | 236745 | 301869 |
5999 | Miscellaneous and Specialty Retail Stores | 203356 | 325414 |
6011 | Financial Institutions – Manual Cash Disbursements | 47793 | 85592 |
mar <- plot_month("03","Mar")
mar$plt
mar$tbl
MCC | Description | 2019 | 2020 |
---|---|---|---|
4121 | Taxicabs and Limousines | 100191 | 68208 |
4829 | Money Orders – Wire Transfer | 18707 | 48890 |
5411 | Grocery Stores, Supermarkets | 170894 | 180237 |
5499 | Misc. Food Stores – Convenience Stores and Specialty Markets | 50274 | 59528 |
5541 | Service Stations ( with or without ancillary services) | 148208 | 140964 |
5735 | Record Shops | 23904 | 46108 |
5812 | Eating places and Restaurants | 177563 | 148624 |
5814 | Fast Food Restaurants | 284305 | 261753 |
5999 | Miscellaneous and Specialty Retail Stores | 243923 | 310774 |
6011 | Financial Institutions – Manual Cash Disbursements | 56766 | 79597 |
apr <- plot_month("04","Apr")
apr$plt
apr$tbl
MCC | Description | 2019 | 2020 |
---|---|---|---|
4829 | Money Orders – Wire Transfer | 19355 | 37603 |
5411 | Grocery Stores, Supermarkets | 162668 | 89860 |
5499 | Misc. Food Stores – Convenience Stores and Specialty Markets | 50755 | 30979 |
5541 | Service Stations ( with or without ancillary services) | 145971 | 70446 |
5735 | Record Shops | 29313 | 28662 |
5812 | Eating places and Restaurants | 166319 | 61977 |
5814 | Fast Food Restaurants | 282207 | 107498 |
5942 | Book Stores | 26974 | 25455 |
5999 | Miscellaneous and Specialty Retail Stores | 258077 | 129933 |
6011 | Financial Institutions – Manual Cash Disbursements | 56793 | 41980 |
Narrowing down from the 2019 vs 2020 spending trends, we want to know the changes in grocery spendings and what that implies for the future
# grocery spending impacts due to covid (line graphs by MCC) - show trends over the years
# spending_grocers <-
# spending_MCC %>%
# filter(MCC=="5411") %>%
# saveRDS("baymap/spending_grocers.rds")
# spending_grocers <- readRDS("baymap/spending_grocers.rds")
#
# spending_grocers_annual <-
# spending_grocers %>%
# filter(month(date)<=5) %>%
# group_by(year(date),month(date)) %>%
# summarize(
# mean=mean((as.numeric(total_spent)/as.numeric(transaction_counts)))
# ) %>%
# arrange(`month(date)`)
# saveRDS(spending_grocers_annual,"baymap/spending_grocers_annual.rds")
spending_grocers_annual <- readRDS("baymap/spending_grocers_annual.rds")
grocer_annual <-
(ggplot(spending_grocers_annual,aes(x=as.character(`month(date)`),y=mean, color=as.character(`year(date)`), group=as.character(`year(date)`), text=paste0("$", round(mean,2)))) +
geom_line(size=1) +
geom_point(size=1.5) +
scale_x_discrete(labels=c("1"="Jan","2" = "Feb", "3" = "Mar", "4" = "Apr", "5" = "May")) +
labs(y= "Average Daily Spendings on Groceries ($)", x = "Date", color="Legend") +
theme_minimal() +
theme(legend.position="top")) %>%
ggplotly(tooltip="text") %>%
config(displayModeBar = F) %>%
layout(legend = list(orientation="h",x = 0.4, y = 1.1))
grocer_annual
# spending_grocers_covid <-
# spending_grocers %>%
# filter(month(date)<=5) %>%
# saveRDS("baymap/spending_grocers_covid.rds")
spending_grocers_covid <- readRDS("baymap/spending_grocers_covid.rds")
# spending_grocers_byweek <-
# spending_grocers_covid %>%
# group_by(week = week(date),year(date)) %>%
# summarize(
# mean=mean((as.numeric(total_spent)/as.numeric(transaction_counts)))
# ) %>%
# saveRDS("baymap/spending_grocers_byweek.rds")
spending_grocers_byweek <- readRDS("baymap/spending_grocers_byweek.rds")
grocer_weekly <-
(ggplot(spending_grocers_byweek,aes(x=week,y=mean, color=as.character(`year(date)`),group=as.character(`year(date)`),text=paste0("Week ", week,": $", round(mean,2)))) +
geom_line(size=1) +
geom_point(size=1.5) +
scale_x_continuous(breaks = seq(1, 22, by = 4)) +
labs(y= "Average Daily Spendings on Groceries ($)", x = "Week Number", color="Legend") +
theme_minimal() +
theme(legend.position="top")) %>%
ggplotly(tooltip="text") %>%
config(displayModeBar = F) %>%
layout(legend = list(orientation="h",x = 0.4, y = 1.1))
grocer_weekly
# spending_grocers_weekday <-
# spending_grocers_covid %>%
# group_by(wday(date),date,year(date)) %>%
# summarize(
# mean=mean((as.numeric(total_spent)/as.numeric(transaction_counts)))
# ) %>%
# saveRDS("baymap/spending_grocers_weekday.rds")
spending_grocers_weekday <- readRDS("baymap/spending_grocers_weekday.rds")
grocer_weekday <-
(ggplot(spending_grocers_weekday, aes(x=as.character(`wday(date)`),y=mean, fill=as.character(`year(date)`),group=as.character(`year(date)`), text=paste0("$", round(mean,2)))) +
geom_bar(stat="identity",position=position_dodge()) +
scale_x_discrete(labels=c("1"="Sun","2" = "Mon", "3" = "Tues", "4" = "Wed", "5" = "Thurs", "6" = "Fri","7"="Sat")) +
labs(y= "Average Daily Spendings on Groceries ($)", x = "Weekday", fill="Legend") +
theme_minimal() +
theme(legend.position="top")) %>%
ggplotly(tooltip="text") %>%
config(displayModeBar = F) %>%
layout(legend = list(orientation="h",x = 0.4, y = 1.1))
grocer_weekday
Using Facteus - Safegraph Walmart spending data, we compared the instore spending trends to the online spending trends to see the importance of online shopping nowadays.
# compare instore to online ratio and potential for the online shift before and after covid
## heat map of online-to-instore ratio jan through april 2020 by month
## line graph, online-to-instore ratio jan through april 2020
# instore2020 <-
# walmart_instore %>%
# filter(year(date) == 2020) %>%
# dplyr::select(date,zip,transaction_counts) %>%
# group_by(week(date)) %>%
# summarize(total_counts = sum(as.numeric(transaction_counts)))
#
# online2020 <-
# walmart_online %>%
# filter(year(date) == 2020) %>%
# dplyr::select(date,zip,transaction_counts) %>%
# group_by(week(date)) %>%
# summarize(total_counts = sum(as.numeric(transaction_counts))) %>%
# left_join(instore2020, by=c("week(date)"), suffix=c("_online","_instore")) %>%
# melt(id="week(date)") %>%
# saveRDS("baymap/percentage.rds")
percentage <- readRDS("baymap/percentage.rds")
percentage_plt <-
(ggplot(percentage, aes(x=`week(date)`,y=value, fill=variable, text=as.character(round(value)))) +
geom_bar(stat="identity",position="fill") +
scale_fill_manual(values=c("#69a4a2","#94c0c2")) +
scale_y_continuous(labels = scales::percent) +
labs(x = "Week") +
theme_minimal() +
theme(axis.title.y = element_blank())) %>%
ggplotly(tooltip="text") %>%
config(displayModeBar = F) %>%
layout(legend = list(orientation="h",x = 0.4, y = 1.1),
hovermode = 'compare')
percentage_plt
# instore2020 <-
# walmart_instore %>%
# filter(year(date) == 2020) %>%
# dplyr::select(date,zip,transaction_counts) %>%
# group_by(week(date)) %>%
# summarize(total_counts = sum(as.numeric(transaction_counts))) %>%
# mutate(relativeChange_instore = total_counts/sum(total_counts)) %>%
# dplyr::select(-total_counts)
#
# online2020 <-
# walmart_online %>%
# filter(year(date) == 2020) %>%
# dplyr::select(date,zip,transaction_counts) %>%
# group_by(week(date)) %>%
# summarize(total_counts = sum(as.numeric(transaction_counts))) %>%
# mutate(relativeChange_online = total_counts/sum(total_counts)) %>%
# dplyr::select(-total_counts) %>%
# left_join(instore2020, by=c("week(date)"), suffix=c("_online","_instore")) %>%
# melt(id="week(date)") %>%
# saveRDS("baymap/relative.rds")
relative <- readRDS("baymap/relative.rds")
relative_plt <-
(ggplot(relative, aes(x=`week(date)`,y=value, fill=variable, group=variable, text= paste0(as.character(round(value*100,2)),"%"))) +
geom_bar(stat="identity", position="dodge") +
scale_fill_manual(values=c("#69a4a2","#94c0c2")) +
scale_y_continuous(labels = scales::percent) +
labs(x = "Week") +
theme_minimal() +
theme(axis.title.y = element_blank())) %>%
ggplotly(tooltip="text") %>%
config(displayModeBar = F) %>%
layout(legend = list(orientation="h",x = -0.1, y = 1.1))
relative_plt
# instore2020 <-
# walmart_instore %>%
# filter(year(date) == 2020) %>%
# dplyr::select(date,zip,transaction_counts) %>%
# group_by(week(date)) %>%
# summarize(total_counts = sum(as.numeric(transaction_counts)))
#
# online2020 <-
# walmart_online %>%
# filter(year(date) == 2020) %>%
# dplyr::select(date,zip,transaction_counts) %>%
# group_by(week(date)) %>%
# summarize(total_counts = sum(as.numeric(transaction_counts))) %>%
# left_join(instore2020, by=c("week(date)"), suffix=c("_online","_instore")) %>%
# mutate(transactions_ratio = total_counts_online/total_counts_instore) %>%
# saveRDS("baymap/online_instore.rds")
online_instore <- readRDS("baymap/online_instore.rds")
online_instore_plt <-
(ggplot(online_instore, aes(x=`week(date)`,y=transactions_ratio, group=1, text= as.character(round(transactions_ratio,2)))) +
geom_line(size=1, color="#69a4a2") +
geom_point(size=1.5, color="#296e6b") +
labs(x = "Week") +
theme_minimal()+
theme(axis.title.y = element_blank())) %>%
ggplotly(tooltip="text") %>%
config(displayModeBar = F)
online_instore_plt
Timelapse of online spending trends in the Bay Area. San Francisco and Concord areas started purchasing more online whereas Hayward and Fremont areas reduced their purchasing online (or increased their purchasing instores).
# instore2020 <-
# walmart_instore %>%
# filter(year(date) == 2020) %>%
# dplyr::select(date,zip,transaction_counts) %>%
# group_by(zip, month(date)) %>%
# summarize(total_counts = sum(as.numeric(transaction_counts)))
#
# online2020 <-
# walmart_online %>%
# filter(year(date) == 2020) %>%
# dplyr::select(date,zip,transaction_counts) %>%
# group_by(zip, month(date)) %>%
# # group_by(zip) %>%
# summarize(total_counts = sum(as.numeric(transaction_counts))) %>%
# left_join(instore2020, by=c("month(date)","zip"), suffix=c("_online","_instore")) %>%
# # left_join(instore2020, by=c("zip"), suffix=c("_online","_instore")) %>%
# mutate(transactions_ratio = total_counts_online/total_counts_instore) %>%
# left_join(bay_zctas, by=c("zip"="ZCTA5CE10")) %>%
# dplyr::select(zip,`month(date)`,transactions_ratio, geometry) %>%
# # dplyr::select(zip,transactions_ratio, geometry) %>%
# unite(zip_month, zip:`month(date)`,sep="_") %>%
# distinct(zip_month,.keep_all = T) %>%
# separate(zip_month, c("zip","month"), sep="_") %>%
# st_as_sf(dim = "XY", sf_column_name = "geometry") %>%
# st_transform(crs=4326) %>%
# replace_na(list(transactions_ratio=0)) %>%
# saveRDS("baymap/online_instore_map_month.rds")
online_instore_map_month <- readRDS("baymap/online_instore_map_month.rds")
walmart_bay <- readRDS("baymap/walmart_bay.rds")
walmart_bay_online <- walmart_bay[c(1,3,4,18,19,21,22,23,25,29,31,33,35),]
walmart_bay_instore <- walmart_bay[-c(1,3,4,18,19,21,22,23,25,29,31,33,35),]
pal_month <- colorQuantile("viridis", NULL, n = 5)
io_mp <- leaflet() %>%
addProviderTiles(providers$CartoDB.VoyagerLabelsUnder, group = "Default") %>%
addPolygons(
data = online_instore_map_month %>% filter(month==1),
weight=1,
color = ~pal_month(transactions_ratio),
label = ~as.character(round(transactions_ratio,2)),
group="January"
) %>%
addPolygons(
data = online_instore_map_month %>% filter(month==2),
weight=1,
color = ~pal_month(transactions_ratio),
label = ~as.character(round(transactions_ratio,2)),
group="February"
) %>%
addPolygons(
data = online_instore_map_month %>% filter(month==3),
weight=1,
color = ~pal_month(transactions_ratio),
label = ~as.character(round(transactions_ratio,2)),
group="March"
) %>%
addPolygons(
data = online_instore_map_month %>% filter(month==4),
weight=1,
color = ~pal_month(transactions_ratio),
label = ~as.character(round(transactions_ratio,2)),
group="April"
) %>%
addCircleMarkers(
lng = walmart_bay_instore$longitude,
lat=walmart_bay_instore$latitude,
radius=3,
fillColor = col[5],
color = col[5],
fillOpacity = "80%",
popup = paste0("<strong>",walmart_bay_instore$location_name,"</strong><br>",
walmart_bay_instore$street_address,"<br>",walmart_bay_instore$city,", ",walmart_bay_instore$postal_code),
group = "Walmart Locations"
) %>%
addCircleMarkers(
lng = walmart_bay_online$longitude,
lat=walmart_bay_online$latitude,
radius=3,
fillColor = col[6],
color = col[6],
fillOpacity = "80%",
popup = paste0("<strong>",walmart_bay_online$location_name," Grocery Pick-Up</strong><br>",
walmart_bay_online$street_address,"<br>",walmart_bay_online$city,", ",walmart_bay_online$postal_code),
group="Walmart Grocery Pick-up Locations"
) %>%
addLegend(
'bottomleft',
pal=pal_month,
values=(online_instore_map_month %>% filter(month==1))$transactions_ratio,
title="Online-Instore Transaction Ratio"
) %>%
hideGroup(c("February","March","April")) %>%
showGroup(c("January","Walmart Grocery Pick-up Locations", "Walmart Locations"))
io_mp