The following calculation assumes a sample size of 150, a two-sided alpha value of 0.05, and a power of 0.80. The plot below shows the MDES as a function of the proportion of treated units.
t_c <- qt(0.975, 148, lower.tail=T) # critical t-value
t_a <- qt(0.80, 148, lower.tail=T) # t-value for alternative
N <- 150 # sample size
p <- 0.10 # probability of treatment
mdes <- (t_c + t_a) * sqrt(1/(N*p*(1-p)))
mdes
## [1] 0.7675555
# now with varying probabilities of treatment
p_vals <- seq(0.05, 0.40, by = 0.01)
mdes_vals <- rep(NA, length(p_vals))
for(i in 1:length(p_vals)){
mdes_vals[i] <- (t_c + t_a) * sqrt(1/(N*p_vals[i]*(1-p_vals[i])))
}
plot1_df <- cbind.data.frame(p_vals,mdes_vals)
ggplot(plot1_df, aes(x=p_vals,y=mdes_vals)) +
geom_point(col="gray40") +
geom_line(y=0.8, col="red", linetype="dashed") +
geom_line(y=0.5, col="forestgreen", linetype="dashed") +
xlab("Probability of Treatment") +
ylab("MDES") +
theme_bw()
The commonly used threshold for a ‘’large’’ MDES is 0.80. This is met as long as p > 0.10. The threshold for a ‘’medium’’ MDES is 0.50. This is met only when p > 0.30.
We now estimate the MDES, but with a stratified (block) design. For simplicity, assume that we have 4 blocks. We fix the proportion of treated units p at 0.10 and vary the proportion of explained variation in the outcome predicted by the blocks from 0.1 to 0.8.
t_c <- qt(0.975, 145, lower.tail=T) # critical t-value
t_a <- qt(0.80, 145, lower.tail=T) # t-value for alternative
N <- 150
p <- 0.10
r2_vals <- seq(0.1, 0.8, by=0.025)
mdes_vals <- rep(NA, length(r2_vals))
for(i in 1:length(r2_vals)){
mdes_vals[i] <- (t_c + t_a) * sqrt((1-r2_vals[i])/(N*p*(1-p)))
}
plot2_df <- cbind.data.frame(r2_vals, mdes_vals)
ggplot(plot2_df, aes(x=r2_vals,y=mdes_vals)) +
geom_point(col="gray40") +
geom_line(y=0.8, col="red", linetype="dashed") +
geom_line(y=0.5, col="forestgreen", linetype="dashed") +
xlab("R-squared from block dummy variables") +
ylab("MDES") +
theme_bw()
When the blocks remove a little over half of the variation in the outcome, we are able to lower the MDES close to 0.5 while holding p at 0.10.