https://berkeley-gif.github.io/caladapt-docs/indicator.html
CalAdapt extreme heat test
smc_cbgs <- block_groups("CA","San Mateo County", cb = T, progress_bar = F)
scc_cbgs <- block_groups("CA","Santa Clara County", cb = T, progress_bar = F)
study_cbgs <- rbind(smc_cbgs, scc_cbgs)
test_cbg <-
smc_cbgs[1,]$geometry %>%
st_cast("POLYGON") %>%
st_transform(4326) %>%
st_as_text() %>%
str_replace_all(" ","+")
test <-
fromJSON(
paste0(
"https://api.cal-adapt.org/api/series/tasmax_day_CanESM2_rcp85/exheat/?g=",
test_cbg
)
) %>%
.$counts %>%
.[-2] %>%
as.data.frame()
test_point <-
smc_cbgs[1,]$geometry %>%
st_centroid() %>%
st_transform(4326) %>%
st_as_text() %>%
str_replace_all(" ","+")
test2 <-
fromJSON(
paste0(
"https://api.cal-adapt.org/api/series/tasmax_day_CanESM2_rcp85/exheat/?g=",
test_point
)
) %>%
.$counts %>%
unlist() %>%
as.data.frame() %>%
rownames_to_column()
check <- cbind(test,test2)
Test confirms that the first column of the polygon output is just the centroid result. second column must be the average across the polygon
Get extreme heat days for all CBGs in SMC and SCC
study_cbgs <-
rbind(
block_groups("CA","San Mateo County", cb = T, progress_bar = F),
block_groups("CA","Santa Clara County", cb = T, progress_bar = F)
)
exheat_full <- NULL
for(row in 1:nrow(study_cbgs)) {
temp <-
tryCatch(
{
temp <-
fromJSON(
paste0(
"https://api.cal-adapt.org/api/series/tasmax_day_CanESM2_rcp85/exheat/?g=",
study_cbgs[row,]$geometry %>%
st_cast("POLYGON") %>%
st_transform(4326) %>%
st_as_text() %>%
str_replace_all(" ","+")
)
) %>%
.$counts
if(length(temp) == 3){
temp[-2] %>%
as.data.frame() %>%
transmute(
cbg = study_cbgs[row,]$GEOID,
date = index %>% substr(1,4) %>% as.numeric(),
exheat = data.2
)
} else {
temp %>%
unlist() %>%
as.data.frame() %>%
rownames_to_column() %>%
transmute(
cbg = study_cbgs[row,]$GEOID,
date =
rowname %>% substr(1,4) %>% as.numeric(),
exheat = `.`
)
}
},
error = function(cond) {
data.frame(
cbg = study_cbgs[row,]$GEOID,
date = NA,
exheat = NA
)
}
)
exheat_full <-
exheat_full %>%
rbind(temp)
if(row%%10 == 0) {
print(row)
saveRDS(exheat_full, "exheat_full.rds")
}
}
exprecip_full <- NULL
for(row in 1:nrow(study_cbgs)) {
temp <-
tryCatch(
{
temp <-
fromJSON(
paste0(
"https://api.cal-adapt.org/api/series/pr_day_ACCESS1-0_rcp85/pot/?g=",
study_cbgs[row,]$geometry %>%
st_cast("POLYGON") %>%
st_transform(4326) %>%
st_as_text() %>%
str_replace_all(" ","+")
)
) %>%
.$returnlevels %>%
.$`2035-10-01:2064-09-30` %>%
as.data.frame() %>%
t() %>%
.[-7,2] %>%
as.data.frame() %>%
rownames_to_column() %>%
rename(
rp = rowname,
exprecip = "."
) %>%
mutate(
cbg = study_cbgs[row,]$GEOID
)
},
error = function(cond) {
data.frame(
rp = NA,
exprecip = NA,
cbg = study_cbgs[row,]$GEOID
)
}
)
exprecip_full <-
exprecip_full %>%
rbind(temp)
if(row%%10 == 0) {
print(row)
saveRDS(exprecip_full, "exprecip_full.rds")
}
}
Summarize results
exheat_map <-
exheat_full %>%
filter(date > 2034 & date < 2065) %>%
group_by(cbg) %>%
summarize(
exheat = mean(exheat, na.rm = T)
)
exprecip_map <-
exprecip_full %>%
pivot_wider(
names_from = rp,
values_from = exprecip
) %>%
transmute(
cbg = cbg,
exprecip =
(X2)*(1/2) +
(X5 + X2)*(1/2 - 1/5)/2 +
(X10 + X5)*(1/5 - 1/10)/2 +
(X20 + X10)*(1/10 - 1/20)/2 +
(X50 + X20)*(1/20 - 1/50)/2 +
(X100 + X50)*(1/100 - 1/50)/2 +
(X100)*(1/100)
)
hazard_cbgs <-
study_cbgs %>%
select(GEOID) %>%
left_join(
exheat_map,
by = c("GEOID" = "cbg")
) %>%
left_join(
exprecip_map,
by = c("GEOID" = "cbg")
) %>%
st_transform(4326)
Map heat
heat_pal <- colorNumeric(
palette = "Reds",
domain =
hazard_cbgs %>%
filter(!is.na(exheat)) %>%
pull(exheat)
)
precip_pal <- colorNumeric(
palette = "Blues",
domain =
hazard_cbgs %>%
filter(!is.na(exprecip)) %>%
pull(exprecip)
)
leaflet() %>%
addTiles() %>%
addPolygons(
data = hazard_cbgs,
stroke = F,
fillColor = ~heat_pal(exheat),
fillOpacity = 0.5,
label = ~paste0(round(exheat,1), " annual extreme heat days, mid-century")
) %>%
addPolygons(
data = hazard_cbgs,
fill = F,
color = ~precip_pal(exprecip),
opacity = ~exprecip/max(hazard_cbgs$exprecip, na.rm = T),
weight = ~exprecip/max(hazard_cbgs$exprecip, na.rm = T)*2,
label = ~paste0(round(exprecip,1), " annual expected extreme precipitation event in inches, mid-century")
)
acs_vars_2018_5yr <-
listCensusMetadata(
name = "2018/acs/acs5",
type = "variables"
)